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Abstract

We show how Dickson’s lemma yields an algorithm computing the general N-solution
to a linear system over Z. The method is based in determining several particular
solutions. If, to find these particular solutions, one uses techniques based on Gröbner
Bases, our algorithm improves the traditional Integer Programming methods.
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Introduction

We denote N the set of nonnegative integers, and Z the set of integers.
It is a basic and elementary result in Mathematics that the general solution to a linear

system over a field k is obtained as the sum of a particular solution and the general solution
to the associated homogeneous system. Moreover, the general solution in the homogeneous
case, is a k-vector space. Rouche-Frobenius’ theorem is a criterium determining whether or
not a given linear system has a solution. This criterium is constructive because the rank of
a matrix can be calculated in an effective way. Algorithms computing these solutions are
well known.

In the case of integer solutions to the linear system over Z the situation is analogous.
The general solution is also the sum of a particular solution and the general solution to the
associated homogeneous system, which is a finitely generated group. Constructive criteria
which determine, by means of the greatest common divisor, whether or not the system has
a solution, as well as algorithms computing that solution, are also well known.

A recent and computational treatment of the above methods can be found in [5], [11],
or [13].

However, if one is interested in the N-solutions to the linear system over Z, the situation is
different. The general solution to the associated homogeneous system is a finitely generated
semigroup (see for example [20]). But it is not true that the general solution to the non
homogeneous system is obtained by adding this semigroup to a particular solution.

The general N-solution to a linear system over Z can be written as a finite union of
subsets. Any subset is the sum of a particular solution and a finitely generated semigroup
S. These particular solutions, which we call vertices, are the minimal ones for the natural
partial order. The semigroup S is the general solution to the associated homogeneous system.
S is finitely generated by its vertices.

On the other hand, it is easy to see that the general N-solution to a non homogeneous
system can be deduced from the general N-solution to a homogeneous system with a new
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variable. Then, the problem is reduced to compute vertices of homogeneous diophantine
linear systems. By historical reasons, the set of these vertices is known as the Hilbert Basis.

Explicit bounds are known for particular N-solutions of solvable systems (see [1], [2],
[15], [21], [16]). These bounds yield algorithms determining whether or not the system
has an N-solution and, in the solvable case, they provide a particular solution. In [19] a
method computing the general N-solution to a homogeneous linear system is given. Again,
a bound for the coordinates of the solution is used. Now, the bound yields a generating
set of the general solution, and it is obtained by means of a polynomial ideal associated to
the semigroup of the N-solutions. Since the degree of a special type of polynomial in the
ideal is bounded by an integer [22], the authors deduce the bound for the generators in the
semigroup. But these methods are not very efficient because they need an exhaustive search
in a large region.

An efficient algorithm in the case of one equation was given in [4]. The generalization of
its techniques to the general case appeared in [7]. An alternative method was given in [10].
All these works as well as other computational researches can be found in [23].

In [24] algorithms computing particular solutions are given. They are based on the fol-
lowing idea: The author associates a semigroup to the system in such way that, N-solvability
for the system is equivalent to the existence of a special binomial in the semigroup ideal. To
know if such a binomial lies in the ideal, a generating set for the ideal is calculated using a
generalization of the methods in [9] and [12], and a Gröbner basis is computed with respect
to a suitable monomial order. The application of the Gröbner bases to integer program-
ming problems comes from [6] and [16]. However, the practical application of the Gröbner
bases methods to solving large scale integer problems is hampered by the computation of
Gröbner bases, which is quite time consuming in general (see [14]). For example, in the
methods proposed in [6], [16] and [17], the main drawback is that it is necessary computing
a Gröbner basis over a polynomial ring with a lot of variables because Elimination Theory
is used. New methods eluding this problem are considered in [9] and [12].

The main idea in this paper can be summarized saying that the general N-solution to
a linear system over Z can be computed by using any method computing a particular
N-solution. This conclusion comes from that we reduce the computation of the minimal
N-solutions or vertices (which are unknown a priori), to determining a particular solution
of the given system, and particular solutions of a finite number of new systems where some
variables have been fixed. The reduction consists in a recursive process that we explain in
the section 1.

On the other hand, we give the practical performance comparison of our method (Al-
gorithm 4.3) using Gröbner Bases (Algorithm 2.2) and using traditional linear program-
ming methods (Algorithm 3.9). The comparison of running times between both methods
is collected in Table in section 4. We conclude than Gröbner Bases provide an algorithm
considerably faster than the traditional methods.

The description of the algorithm based on Gröbner bases, Algorithm 2.2, is in the section
2. The particular solutions are determined by using Algorithm 2.1, which appears in [24].

The algorithm based on traditional linear programming methods, 3.9, is described in
section 3. There is a classical result in Linear Programming (Proposition 3.1) determining
whether a given homogeneous system has non trivial N-solution, and in this case, finding
a particular solution. The idea appeared in [18]. The result is a constructive version of
Farkas’ lemma, because it is an effective method to determine whether or not a vector is
in the cone generated by a finite number of vectors. The computational behaviour of this
method is very good, but in the recursive scheme that we propose, the non homogeneous
systems appear even if one starts with a homogeneous one. For this reason, we have looked
for a generalization of Proposition 3.1 in the non homogeneous case, and for that we have
used the orthogonal projection vector and a technical result (Proposition 3.5). Then, we get
a new method to obtain particular solutions (Algorithm 3.9).
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Finally, in the section 4 we describe our main algorithm (Algorithm 4.3), we see some
examples and give the table with the computation time to help compare the two proposed
methods, Table in section 4.

We have implemented our algorithm in MapleV and it is available by ftp at anonymous

ftp.uca.es/pub/matematicas/nsol.zip

The comparison with the computational techniques summarized in [23] is not explored.

1 The general solution to a homogeneous system

Let M be a p× q Z-matrix. Let

S := {s ∈ Nq |Ms = 0}.

S is clearly a semigroup of Nq with zero element. We will see that it is finitely generated.

Definition 1.1. : s ∈ S − {0} is a vertex if s = γ + δ, γ, δ ∈ S, implies s = γ or s = δ.

We denote
V S := set of vertices of S.

Remark 1.2. : V S generates S.

Notice that V S is the set of the non null elements in S which are minimal for the natural
partial order in Nq:

γ ≤ δ ⇐⇒ δ − γ ∈ Nq.

Notation 1.3. : If H ⊂ Nq, 1 ≤ i ≤ q, α ∈ N, we denote:

• H(i, α) := {γ = (γ1, . . . , γq) ∈ H | γi = α}.

• If H 6= {0}, V H := {γ ∈ H − {0} | γ is minimal for <}.

• If H = {0}, V H := {0}.

We call vertices of H to the elements in V H.

Lemma 1.4. : (Dickson’s lemma) Let H ⊂ Nq, s = (s1, . . . , sq) ∈ H, s 6= 0, and let

F = {s} ∪
q⋃
i=1

si−1⋃
α=0

V (H(i, α)).

Then, V H = V F .

Proof. It is enough to prove that

∀δ ∈ H ∃γ ∈ F with γ ≤ δ.

Let δ be an element of H. If s ≤ δ there is nothing to prove. Otherwise, there exists an i,
1 ≤ i ≤ q, such that δi < si. Then, for α = δi, δ ∈ H(i, α) and there exists γ ∈ V (H(i, α))
with γ ≤ δ.
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We can identify H(i, α) with a subset of Nq−1 and apply again 1.4 to find V (H(i, α)).
Then, by recurrence, to obtain the set V H it is enough to solve the following problems:

If H ′ = H(i1, α1)(i2, α2) · · · (ir, αr), 1 ≤ ij ≤ q, αj ∈ N, 1 ≤ j ≤ r:

Problem 1: Determine if H ′ = ∅ or not. In the second case, get s ∈ H ′ .

Problem 2: Obtain V H ′ for H ′ ⊂ N.

The following result is clear now.

Corollary 1.5. : V H is finite.

Proof. If H ′ ⊂ N, since N is a well ordered set, V H ′ is empty or has only a unique element.
Thus, by recursively applying 1.4, we obtain that the set V H is always finite.

We apply the above argument to the case H = S. From 1.2 and 1.5 it follows that S
is a finitely generated semigroup in Nq. We are interested in computing the generating set
V S. Notice that, with the above notation, S(i, α) is the set of the N-solutions to the linear
system Mx = 0, where xi = α. This system can be non homogeneous.

Remark 1.6. : Consider the system Mx = c with M a p × 1 Z-matrix and c ∈ Zp.
Notice that it is obvious to determine whether or not there exists s ∈ N such that Ms = c.
Moreover, if there exists such s, it is unique.

Then, in the case H = S, or more generally, in the case H = R where

R := {s ∈ Nq |Ms = c},

with c ∈ Zp, Problem 2 is obvious. On the other hand, Problem 1 is equivalent to deter-
mining whether or not there exists an N-solution to a linear system over Z and, in the case
that there exists an N-solution, finding a particular one. We can use any method solving
this problem (see the introduction) and obtain the following result.

Proposition 1.7. : Let M be a p× q Z-matrix, and c ∈ Zp. Let

R := {s ∈ Nq |Ms = c}.

There exists an algorithm computing V R.
In particular, the algorithm computes a generating set of the semigroup

S := {s ∈ Nq |Ms = 0}.

In the next sections, we explain two algorithms computing the vertices of S and R,
Algorithm 2.2 and Algorithm 3.9. Algorithm 2.2 uses the methods in [24] based in Semigroup
Ideals and Gröbner Bases. Algorithm 3.9 uses Classical Linear Programming.

2 Semigroup Ideals Methods

Let Γ ⊂ Zp be a finitely generated subsemigroup with zero element. Let {n1, . . . ,nr} ⊂ Γ
be a set of generators for Γ.

Let k be a field. We consider A = k[X1, . . . , Xr] the polynomial ring in r indeterminates,
and B = k[t±1 , . . . , t

±
p ] = k[t±] the Laurent ring in p indeterminates.

Let ϕ : A → B the k-algebra homomorphism, defined by ϕ(Xi) = tni . We denote
IΓ := ker(ϕ).
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In order to provide our first algorithm satisfying 1.7, we shall need to determine a finite
generating set of the ideal IΓ, where Γ is obtained from the given system. In fact, in the
recursive process we will need to consider several semigroups like Γ, but only a finite number
of them.

The ideal IΓ is generated by the binomial set

B = {Xα −Xβ |
r∑
i=1

αini =
r∑
i=1

βini with αiβi = 0 ∀i}

(see [22]).
It is well known that by using the Implicitization Algorithm for rational parametrizations

(see for example [8]) one can obtain a finite generating set of IΓ contained in B, if the set
{n1, . . . ,nr} is given. However, new techniques, [9] and [12], improve this algorithm in our
particular case. Both are based in Gröbner Bases.

Let Mx = 0 be a system, where M is a p × q Z-matrix. Let Γ be the subsemigroup of
Zp generated by the column vectors of M , {n1, . . . ,nq}. We have that IΓ ⊂ k[X1, . . . ,Xq].

Notice that
∃u ∈ Nq, u 6= 0, such that Mu = 0,

if and only if
the binomial 1−Xu is in IΓ.

Moreover,
Mx = 0 with u ∈ Nq implies that u = 0,

it is equivalent to that the semigroup Γ satisfies Γ∩ (−Γ) = {0}, because the unique way to
write 0 as a linear combination of the generators of Γ is the trivial one.

The condition Γ ∩ (−Γ) = {0} guarantees Nakayama lemma for Γ-graded modules (see
[3]), whence it is called Nakayama condition.

Then, Γ is Nakayama if and only if there exists no binomial 1−Xα in IΓ.
Moreover, if C is a generating set of IΓ contained in B, there exists a binomial 1−Xα in

IΓ if and only if there exists a binomial ±(1−Xβ) in C.
On the other hand, consider a system Mx = c, with c ∈ Zp. Set now Γ as the sub-

semigroup of Zp generated by the column vectors of M and c, {n1, . . . ,nq, c}. With this
notation, we have now that IΓ ⊂ k[X1, . . . ,Xq+1].

Notice that
∃u ∈ Nq, such that Mu = c,

if and only if

∃u′ = (u, 0) ∈ Nq+1, such that (M |c)u′ = (M |c)eq+1,

where eq+1 = (0, . . . , 0, 1) ∈ Nq+1.
Therefore, the N-solvability for the system is equivalent to the existence of a binomial

Xq+1−Xα in IΓ, where X does not contain the variable Xq+1. (It is enough to take α = u)
Suppose that Γ is Nakayama, and let C be a generating set of IΓ contained in B. In

particular, there is no binomial ±(1−Xα) in C. Then, if there exists a binomial Xq+1−Xβ

in IΓ, where X does not contain the variable Xq+1, there exists a binomial ±(Xq+1 −Xβ′
)

in C. Moreover, if Xβ′
contains the variable Xq+1, since Γ ⊂ Zp is cancellative, we have that

the binomial

±

(
1− Xβ′

Xq+1

)
∈ IΓ.

But, it is a contradiction because Γ is Nakayama.
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Therefore, if Γ is Nakayama, the system is N-solvable if and only if there exists a binomial
±(Xq+1 − Xβ) ∈ C, where X does not contain the variable Xq+1 and C is an arbitrary
generating set of IΓ contained in B.

In the case Γ non Nakayama, to find a similar condition we will need to consider a
Gröbner basis of IΓ with respect to a suitable monomial order. Fix a monomial order giving
priority to the last variable. This means that α, β ∈ Nq+1 with αq+1 < βq+1 implies α < β.
It is well known that the reduced Gröbner basis of IΓ is contained in B (see [22]). Let G be
this Gröbner basis. It is clear that there exists a binomial Xq+1 −Xβ in IΓ if and only if
there is a binomial ±(Xq+1 −Xβ′

) in G, where X does not contain the variable Xq+1.
Particular N-solutions to a linear diophantine system can be computed by means of

Semigroup Ideals as follows.

Algorithm 2.1. : Particular N-solution by means of Semigroup Ideals
Input: A system Mx = c, where M is a p× q Z-matrix and c ∈ Zp.
Output: A vector u ∈ Nq such that Mu = c, u 6= 0 if it exists, or ∅ in the case there is no
u ∈ Nq such that Mu = c.
1. If c = 0

- Take Γ the subsemigroup of Zp generated by the column vectors of M , {n1, . . . ,nq}.

- Compute a generating set of IΓ, C.

- If there is a binomial ±(1−Xα) ∈ C, output u = α and STOP.

- Otherwise, output u = 0 and STOP.

2. If c 6= 0

- Take Γ the subsemigroup of Zp generated by the column vectors of M and c, {n1, . . . ,nq, c}.

- Compute a generating set of IΓ, C.

- If there is a binomial ±(Xq+1−Xβ) ∈ C, where X does not contain the variable Xq+1,
output u = β and STOP. Otherwise, continue.

- If there is no binomial ±(1−Xα) ∈ C, output ∅ and STOP. Otherwise, fix a monomial
order giving priority to the last variable, and take a Gröbner basis for IΓ, G.

- If there is a binomial ±(Xq+1−Xβ) ∈ G, where X does not contain the variable Xq+1,
output u = β and STOP.

- Otherwise, output ∅ and STOP.

We can now describe a first algorithm satisfying Proposition 1.7.

Algorithm 2.2. : Vertices by means of Semigroup Ideals
Input: A system Mx = c, where M is a p× q Z-matrix and c ∈ Zp.
Output: V R for R = {s ∈ Nq |Ms = c}.
1. If q = 1 use remark 1.6 and STOP.
2. If q ≥ 2, determine whether or not R = ∅ or {0} using Algorithm 2.1.
3. If R = ∅ or {0}, output V R = R and STOP.
4. Otherwise, take s = (s1, . . . , sq) ∈ R− {0}.
5. For i = 1, . . . , q, and α = 0, . . . , si−1, compute V (R(i, α)) by recursively calling Algorithm
2.2.
6. Compute V F for

F = {s} ∪
q⋃
i=1

si−1⋃
α=0

V (R(i, α)).

7. Output V R = V F .
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Example 2.3. : Consider the following system{
x1 − 2x2 + x3 + 2x4 = 0
−2x1 − x2 − x3 + 2x4 = 0

Let M be the matrix

M :=
(

1 −2 1 2
−2 −1 −1 2

)
We are going to compute the set V R, where

R = {s ∈ Nq |Ms = 0},

following the steps in Algorithm 2.2. Since this system is homogeneous, we have that R = S
with our usual notation. Therefore, V R is a generating set of the semigroup R = S, and we
are going to compute the Hilbert basis of this system. We must determine whether or not
R = ∅ or {0} by using Algorithm 2.1.

Let Γ be the subsemigroup of Z2 generated by the column vectors of M ,

Γ := 〈(1,−2), (−2,−1), (1,−1), (2, 2)〉.

The associated ideal of Γ is

IΓ =< x2x
5
3 − x3

1, x
3
2x

3
3x

2
4 − x1, x

2
2x

4
3x4 − x2

1, x
4
1x4 − x6

3, x
4
2x

3
4x

2
3 − 1, x1x2x4 − x3 > .

Since the binomial
x4

2x
2
3x

3
4 − 1 ∈ IΓ,

we obtain the particular N−solution s := (0, 4, 2, 3).
Now, in order to construct the set F in step 6 of Algorithm 2.2, we must determine the

sets V (R(i, α)) for i = 2, 3, 4 (notice that s1 = 0), and α = 0, . . . , si − 1.
The set R(2, α) is the general N-solution to the system

(
1 1 2
−2 −1 2

) x1

x2

x3

 = −α
(
−2
−1

)
.

Then, in order to compute V (R(2, 0)), we consider the semigroup

Γ20 :=< (1,−2), (1,−1), (2, 2) >,

and determine its ideal
IΓ20 =< x4

1x3 − x6
2 > .

Since there is no binomial ±(1 − Xβ) in its generating set, we conclude R(2, 0) = {0} =
V (R(2, 0)).

In the case of R(2, 1) we must consider the semigroup

Γ21 :=< (1,−2), (1,−1), (2, 2), (2, 1) > .

We determine its ideal

IΓ21 =< x4
4 − x2

2x
3
3, x

3
4x1 − x3

2x
2
3, x

2
4x

2
1 − x3x

4
2, x4x2 − x1x3, x

6
2 − x4

1x3, x4x
3
1 − x5

2 > .

Γ21 is Nakayama because there is no binomial ±(1−X)β in its generating set. Then, since
there exists no binomial ±(x4−Xβ) in the generating set of Γ21, we conclude R(2, 1) = ∅ =
V (R(2, 1)).

By similar arguments we obtain that V (R(2, 2)) = V (R(2, 3)) = ∅.
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In order to determine the vertices of R(3, 0) and R(3, 1), we consider the systems(
1 −2 2
−2 −1 2

) x1

x2

x3

 = −α
(

1
−1

)
, (1)

with α = 0, 1.
For α = 0, we obtain in the same way that in cases above, a particular N-solution

s′ = (2, 6, 5). This means (2, 6, 0, 5) ∈ R(3, 0). Then, if we identify R(3, 0) with a subset of
N3, we must determine the finite set

F ′ = {s′} ∪
3⋃
i=1

s′i−1⋃
β=0

V (R(3, 0)(i, β)).

The set R(3, 0)(1, 0) consists of the N-solutions to the homogeneous system with matrix(
−2 2
−1 2

)
.

Using Algorithm 2.1, we obtain R(3, 0)(1, 0) = {0} = V (R(3, 0)(1, 0)).
By similar arguments, we obtain

R(3, 0)(1, 1) = {0} = V (R(3, 0)(1, 1)), and

R(3, 0)(2, β) = ∅ = V (R(3, 0)(2, β)), for β = 0, 1, 2, 3, 4, 5, and

R(3, 0)(3, β) = ∅ = V (R(3, 0)(3, β))for β = 0, 1, 2, 3, 4.

Then, F ′ = {s′}. Therefore, V (R(3, 0)) = {(2, 6, 0, 5)}.
If we set α = 1 in (1), then R(3, 1) corresponds with its general N-solution. We consider

the semigroup
Γ31 :=< (1,−2), (−2,−1), (2, 2), (−1, 1) >,

and determine its ideal

IΓ31 =< x4 − x1x
5
2x

4
3, x

2
1x

6
2x

5
3 − 1 > .

The binomial x4 − x1x
5
2x

4
3 ∈ IΓ31 indicates that s′′ = (1, 5, 4) is a particular N-solution.

As before, we compute the following sets

R(3, 1)(1, 0) = ∅ = V (R(3, 1)(1, 0)), and

R(3, 1)(2, β) = ∅ = V (R(3, 1)(2, β)), for β = 0, 1, 2, 3, 4, and

R(3, 1)(3, β) = ∅ = V (R(3, 1)(3, β))for β = 0, 1, 2, 3.

Then, we conclude V (R(3, 1)) = {(1, 5, 1, 4)}.
Finally, we consider the systems(

1 −2 1
−2 −1 −1

) x1

x2

x3

 = −α
(

2
2

)
,

where α = 0, 1, 2.
Using similar arguments that in cases above, we obtain

R(4, 0) = {0} = V (R(4, 0)), R(4, 1) = ∅ = V (R(4, 1)), and, R(4, 2) = ∅ = V (R(4, 2)).

Then, F = {0, (0, 4, 2, 3), (2, 6, 0, 5), (1, 5, 1, 4)}. Therefore, we conclude that V R =
V F = F − {0} is the Hilbert basis of the given system.
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3 Classical Linear Programming Methods

In this section we describe an alternative algorithm to 2.2. It is also based in 1.4, but it
computes the particular solutions by means of linear programming methods.

First, consider the homogeneous case using the idea given in [18]. Let M be a p × q
Z-matrix. Let

S := {s ∈ Nq |Ms = 0}.

Notice that if one is interested in the existence of a non trivial N-solution to Mx = 0,
it is enough to study if there exists u ∈ Qq − {0} with ui ≥ 0 for all i = 1, . . . , q, such that
Mu = 0.

Suppose that L is the Q-vector space of the solutions in Qq to the linear system Mx = 0.
Assume that b1, . . . ,bn ∈ Qq is a basis of L. Let B the n × q matrix with row vectors bi.
Denote a1, . . . ,aq ∈ Qn the column vectors of B.

Notice that
∃u ∈ L− {0} with ui ≥ 0 ∀i = 1, . . . , q

if and only if

∃v ∈ Qn with v · ai ≥ 0 ∀i = 1, . . . , q and v · ai > 0 for at least one i.

The relation between the vectors u and v is given by

u = v1b1 + · · ·+ vnbn = (v · a1, . . . ,v · aq).

Then, it is enough to apply the following result which is a constructive version for Farkas’
lemma.

Proposition 3.1. : (Effective Farkas’ lemma)
Let a1, . . . ,aq ∈ Qn. There exists an algorithm to determine whether or not there exists

a vector v ∈ Qn such that v · a1 > 0 and v · ai ≥ 0 ∀i = 2, . . . , q. In the case that it exists,
the algorithm gives such a vector v.

Proof. We proceed by recurrence on q.
Suppose that q = 1. If a1 = 0, then there is no solution. Otherwise, if i is such that

a1i 6= 0, take v having i-coordinate equal to a1i

|a1i| and 0 otherwise.
Assume that q ≥ 2.
If there is no w ∈ Qn such that w · a1 > 0 and w · ai ≥ 0, ∀i = 2, . . . , q − 1, there is no

v. If there exists w and w · aq ≥ 0, take v = w. But if w · aq < 0, then let

(∗) a′i = ai −
w · ai
w · aq

aq ∀i = 1, . . . , q − 1.

If there exists w′ ∈ Qn such that w′ · a′1 > 0 and w′ · a′i ≥ 0, ∀i = 2, . . . , q − 1, it is
enough to take

v = w′ − w′ · aq
w · aq

w,

because v · ai = w′ · a′i, i = 1, . . . , q− 1, and v · aq = 0. Otherwise, we will prove that there
is no solution v. We proceed by induction.

If q = 2, since there is no w′, we have that a′1 = 0. Then, a1 = λa2, with λ = w·a1
w·a2

< 0.
It is clear that there is no v.

Suppose the result true for any integer less than q. Then, since there is no w′, there exists
r (the number of times that one has used (∗)), 1 ≤ r ≤ q − 1, and for any j = 1, . . . , r − 1,
there exist lj with lj > lj−1, and wj ,a

(j)
1 , . . . ,a(j)

lj
∈ Qn such that:
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1) a(1)
i = a′i, ∀i = 1, . . . , q − 1.

2) wj · a(j)
1 > 0, wj · a(j)

i ≥ 0, wj · a(j)
lj

< 0, ∀i = 2, . . . , lj − 1.

3) a(j+1)
i = a(j)

i −
wj ·a(j)

i

wj ·a(j)
lj

a(j)
lj

, 1 ≤ i ≤ lj − 1.

4) a(r)
1 = 0.

Denote by
λ

(1)
i = −w · ai

w · aq
, i = 1, . . . , q − 1,

and

λ
(j+1)
i = −wj · a(j)

i

wj · a(j)
lj

, j = 1, . . . , r − 1, i = 1, . . . , lj − 1.

Notice that λ(j)
i ≥ 0, λ(j)

1 > 0, ∀j, ∀i.
We will prove that

a(j)
i = ai +

q∑
l=i+1

µ
(j)
il al, with µ

(j)
il ≥ 0,

∀j = 1, . . . , r, ∀i = 1, . . . , lj , ∀l = i+ 1, . . . , q.
We proceed by induction on j. For j = 1, it is enough to notice that from (∗)

a(1)
i = a′i = ai + λ

(1)
i aq.

Assume that it is true for j. We will prove it for j + 1. From 3),

a(j+1)
i = a(j)

i + λ
(j+1)
i a(j)

lj
, 1 ≤ i ≤ lj − 1.

We can use the induction hypothesis to write

a(j)
i = ai +

q∑
l=i+1

µ
(j)
il al,

and

a(j)
lj

= alj +
q∑

l=lj+1

µ
(j)
lj l

al,

and obtain the result.
Now, since a(r)

1 = 0, we have that

a1 = −
q∑
l=2

µ
(r)
1l ai,with µ

(r)
1l ≥ 0.

It is clear that there is no v.

The following algorithm satisfies Proposition 3.1.

Algorithm 3.2. : Farkas
Input: Vectors a1, . . . ,aq ∈ Qn.
Output: A vector v ∈ Qn such that v · a1 > 0 and v · ai ≥ 0 for any i = 2, . . . , q, or ∅ in the
case that there is no such v.
1. If q = 1:

10



- If a1 = 0, output ∅ and STOP.

- Otherwise, determine i with a1i 6= 0 and output v having i-coordinate equal to a1i

|a1i|
and 0 otherwise and STOP.

2. If q ≥ 2, determine if there exists w ∈ Qn such that w · a1 > 0 and w · ai ≥ 0 for any
i = 2, . . . , q − 1, by recursively using Algorithm 3.2.
3. If there is no w, then output ∅ and STOP.
4. Otherwise:

- If w · aq ≥ 0, output v = w and STOP.

- Otherwise, continue.

5. Let
a′i = ai −

w · ai
w · aq

aq ∀i = 1, . . . , q − 1.

Determine if there exists w′ ∈ Qn such that w′ · a′1 > 0 and w′ · a′i ≥ 0, ∀i = 2, . . . , q − 1,
by Algorithm 3.2.
6. If there exists w′, output

v = w′ − w′ · aq
w · aq

w

and STOP.
7. Otherwise, output ∅.

Remarks 3.3. :

1. The algorithm above allows us to determine if there exists µi ≤ 0 such that a1 =∑q
i=2 µiai, or equivalently, if −a1 is in the cone of a2, . . . ,aq, whence the name Farkas’

lemma.

2. The above algorithm solves Problem 1 in the case H ′ = S. We describe this solution
in Algorithm 3.4 below.

3. If S ⊂ N2, since S(i, α) ⊂ N, Remark 1.6 and the remark above allow us to compute
V S using Lemma 1.4.

Algorithm 3.4. : Particular N-solution to a homogeneous system
Input: A system Mx = 0, where M is a p× q Z-matrix.
Output: A vector u ∈ Nq, such that Mu = 0, u 6= 0 if it exists.
1. If q = 1 use remark 1.6.
2. If q ≥ 2, let b1, . . . ,bn ∈ Qq a basis of the Q-vector space given by Mx = 0. Let B be
the matrix with row vectors bi. Denote by a1, . . . ,aq the columns of B.
3. While i = 1, . . . , q

- Determine if there exists a vector v such that v · ai > 0 and v · aj ≥ 0, for any j 6= i
and 1 ≤ j ≤ q, by Algorithm 3.2.

- If there exists v, let u′ = (v · a1, . . . ,v · aq) ∈ Qq. Output u = mu′, where m is the
least common multiple of the denominators of vi · aq, and STOP.

4. Output u = 0.

Recall that to carry out the recursive technique in Lemma 1.4 we need to find a particular
solution to a non homogeneous system obtained by fixing a variable in Mx = 0.

Let M ′ a p × (q − 1) matrix over Z and c ∈ Zp. To determine if there exists u ∈ Nq−1

such that M ′u = c, we consider the homogeneous linear system of matrix (−c|M ′), and let

11



L ⊂ Qq be the Q-vector space of its solutions. Then, there exists u ∈ Nq−1 if and only if
there exists (1,u) ∈ L with u ∈ Nq−1.

Assume that b1, . . . ,bn ∈ Qq is a basis of L. Let B the n × q matrix with row vectors
bi. Denote a1, . . . ,aq ∈ Qn the column vectors of B.

Notice that
∃(1,u) ∈ L with u ∈ Nq−1

if and only if

∃v ∈ Qn with v · a1 = 1 and v · ai ∈ N, ∀i = 2, . . . , q.

The relation between the vectors u and v is given by

(1,u) = v1b1 + · · ·+ vnbn = (v · a1, . . . ,v · aq).

Then, we consider the following problem:

Problem: Given vectors a1, . . . ,aq ∈ Qn, determine whether or not there exists v ∈ Qn
such that v · a1 = 1 and v · ai ∈ N , ∀i = 2, . . . , q.

We denote W the Q-vector space generated by a2, . . . ,aq. If a1 6∈ W , take â1 the
orthogonal projection of a1 onto W⊥. It is clear that â1 6= 0 and a1 · â1 > 0. Then, it is
enough to take

v =
â1

a1 · â1
,

because v · a1 = 1 and v · ai = 0 for any i = 2, . . . , q.
If a1 ∈W , we distinguish two cases:

- If a1 =
∑q
i=2 µiai with µi ≤ 0, then there is no v (Remark 3.3.1.).

- Otherwise, take a linear combination of type a1 =
∑q
i=2 µiai. Let A the (q−1)×n matrix

with row vectors ai, i = 2, . . . , q. Denote by L1 ⊂ Qq−1 the Q-vector space generated by
the column vectors of A. Suppose that Cx = 0 are implicit equations of L1, and let

S1 = {s ∈ Nq−1 | Cs = 0}.

Consider {s1, . . . , sh} a generating set of the semigroup S1. Denote D = (s1| . . . |sh) and

(m1, . . . ,mh) := (µ2, . . . , µq)D.

Then, we get the following result.

Proposition 3.5. : With assumptions and notations as above, the following conditions are
equivalent:

1. ∃v ∈ Qn with v · a1 = 1 and v · ai ∈ N, ∀i = 2, . . . , q.

2. ∃w ∈ Nh such that m1w1 + · · ·+mhwh = 1.

In that case, it is enough to take v as a particular solution of Ax = z, with z = Dw.

Proof. 1 ⇒ 2 Let z = Av. By 1, it is clear that z ∈ S1. Then, there exists w ∈ Nh such
that z = Dw. The linear combination a1 =

∑q
i=2 µiai and the equality v · a1 = 1, implies

that (µ2, . . . , µq) · z = 1. Then,

m1w1 + · · ·+mhwh = 1.

2 ⇒ 1 Let z = Dw. Since z ∈ S1 ⊂ L1, we deduce that the ranks of A and (A|z) are
equal. Take v as a particular solution of Ax = z. Now, it is enough to notice that the linear
combination a1 =

∑q
i=2 µiai implies that

v · a1 = (µ2, . . . , µq)Av = (µ2, . . . , µq)Dw = 1.
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Remarks 3.6. :

1. Notice that the proof does not use the hypothesis µi ≥ 0 for at least one i, although
this case is solved by Farkas’s lemma.

2. From 3.3.3 we can determine the condition 1 in Proposition 3.5 for q = 3. Now,
applying 1.4 we can calculate V S for q = 3. Then, by recurrence, we obtain a new
method for computing vertices. In the last step, we need to find a particular N-solution
to a unique equation. For this we can use the method in [4].

Problem is solved by the following algorithm.

Algorithm 3.7. :
Input: Vectors a1, . . . ,aq ∈ Qn, q ≥ 2.
Output: A vector v ∈ Qn such that v · a1 = 1 and v · ai ∈ N, or ∅ in the case there is no
such v.
1. Consider W the Q-vector space generated by a2, . . . ,aq.
2. If a1 6∈ W , take â1 the orthogonal projection of a1 onto W⊥. Output v = â1

a1·â1
and

STOP.
3. Otherwise, apply Algorithm 3.2:

- If a1 =
∑r
i=2 µiai with µi ≤ 0 (it is equivalent to output ∅), then output ∅ and STOP.

- Otherwise, continue.

4. Take a linear combination a1 =
∑q
i=2 µiai.

5. Let A be the matrix with row vectors ai, i = 2, . . . , q. Consider Cx = 0 implicit equations
of L1 ⊂ Qq−1 the Q-vector space generated by the column vectors of A. Compute {s1, . . . , sh}
a generating set of

S1 = {s ∈ Nq−1 | Cs = 0},
using Algorithm 3.9.
6. Let (m1, . . . ,mh) = (µ2, . . . , µq)D, where D = (s1| . . . |sh).

- If there exists w ∈ Nh such that m1w1+· · ·+mhwh = 1, output v a particular solution
of Ax = z with z = Dw and STOP. (See Remark 3.6.2)

- Otherwise, output ∅.

Particular N-solutions can be computed by means of Classical Linear Programming as
follows.

Algorithm 3.8. : Particular N-solution by means of Classical Linear Programming
Input: A system M ′x = c, where M ′ is a p× (q − 1) Z- matrix and c ∈ Zp.
Output: A vector u ∈ Nq−1 such that M ′u = c, or ∅ in the case there is no such u.
1. If c = 0, use Algorithm 3.4.
2. Otherwise, continue.
3. If q = 2, use remark 1.6.
4. If q ≥ 3, let M = (−c|M ′). Consider b1, . . . ,bn ∈ Qq a basis of the Q-vector space

L = {x ∈ Qq |Mx = 0}.

5. Let B be the matrix with row vectors bi, and let a1, . . . ,aq ∈ Qn be the column vectors
of B. Apply Algorithm 3.7

- If there exists v ∈ Qn such that v · a1 = 1 and v · ai ∈ N, then output u where

(1,u) = v1b1 + · · ·+ vnbn = (v · a1, . . . ,v · aq),

and STOP.
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- Otherwise, output ∅.

We can now describe a second algorithm satisfying Proposition 1.7.

Algorithm 3.9. : Vertices by means of Classical Linear Programming
Input: A system Mx = c, where M is a p× q Z-matrix and c ∈ Zp.
Output: V R for R = {s ∈ Nq |Ms = c}.
1. If q = 1 use remark 1.6 and STOP.
2. If q ≥ 2, determine whether or not R = ∅ or {0} using Algorithm 3.8.
3. If R = ∅ or {0}, output V R = R and STOP.
4. Otherwise, take s = (s1, . . . , sq) ∈ R− {0}.
5. For i = 1, . . . , q, and α = 0, . . . , si−1, compute V (R(i, α)) by recursively calling Algorithm
3.9.
6. Compute V F for

F = {s} ∪
q⋃
i=1

si−1⋃
α=0

V (R(i, α)).

7. Output V R = V F .

Remark 3.10. : Notice that there is not circularity between algorithms above because 3.9
computes S ⊂ N2 by only Farkas’ lemma (see Remark 3.3.2).

Example 3.11. : We consider the same system that in 2.3.{
x1 − 2x2 + x3 + 2x4 = 0
−2x1 − x2 − x3 + 2x4 = 0

and M the matrix

M :=
(

1 −2 1 2
−2 −1 −1 2

)
We are going to compute V R using Algorithm 3.9. We need to determine whether or not

R = ∅ or {0} using Algorithm 3.8. Since the system is homogeneous we will use Algorithm
3.4.

A basis of the Q-vector space given by Mx = 0 is

b1 = (4, 0,−6, 1), and b2 = (−3, 1, 5, 0).

Let a1 = (4,−3), a2 = (0, 1), a3 = (−6, 5), and a4 = (1, 0).
Using Algorithm 3.4, we find v = (5/18, 1/3) such that v · a1 > 0, and v · ai ≥ 0, for

i = 2, 3, 4.
Since (v · a1, . . . ,v · a4) = (1/9, 1/3, 0, 5/18), we obtain s = (2, 6, 0, 5) ∈ R.
We need to determine the finite set

F = {s} ∪
4⋃
i=1

si−1⋃
α=0

V (R(i, α)).

Notice that R(1, α) corresponds to the general N-solution of the system(
−2 1 2
−1 −1 2

)
= −α

(
1
−2

)
. (2)

Set α = 0 in (2). As before, we compute a particular N-solution s′ = (4, 2, 3). Thus,
(0, 4, 2, 3) ∈ R(1, 0).
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We identify R(1, 0) with a set in N3 and compute V (R(1, 0)) using the finite set

F ′ = {s′} ∪
3⋃
i=1

s′i−1⋃
β=0

V (R(1, 0)(i, β)).

In order to determine whether or not R(1, 0)(1, β) = ∅ or {0}, we consider the new
systems (

1 2
−1 2

)(
x1

x2

)
= −β

(
−2
−1

)
. (3)

As before we obtain
R(1, 0)(1, 0) = {0}.

Set β = 1 in (3). Using Algorithm 3.8, we need to consider the homogeneous system
with matrix (

−2 1 2
−1 −1 2

)
.

A basis of the Q-vector space of its solutions is given by b′1 = (2, 1, 3/2). Let a′1 = 2, a′2 = 1,
and a′3 = 3/2. We must determine whether or not exists v′ ∈ Q such that v′ · a′1 = 1, and
v′ · a′i ∈ N, for i = 2, 3. In this case it is clear that there is no such v′. Anyway we will
use Algorithm 3.7 to show that there is not circularity between the algorithms used in this
method (Remark 3.10).

With the notation of Algorithm 3.7, we can consider a′1 = µ2a′2 +µ3a′3, with µ2 = 2 and
µ3 = 0. Let

A =
(

1
3/2

)
.

We consider the implicit equations, Cx = 0, of the Q-vector space generated by the column
vector of A. Set C = (−3 2).

We need to compute a generating set for the semigroup

S1 = {s ∈ N2 | Cs = 0}

using Algorithm 3.9, which calls to Algorithm 3.8, and this, to Algorithm 3.4. As before,
we compute an element s′′ = (2, 3) ∈ S1. Then, V S1 = V F ′′ where

F ′′ = {s′′} ∪
2⋃
i=1

s′′i −1⋃
γ=0

V (S1(i, γ)).

To determine the vertices of S1(1, γ), we consider the systems

2x1 = −γ(−3).

If γ = 0, then x1 = 0 is the unique N-solution. Therefore,

S1(1, 0) = {(0, 0)} = V (S1(1, 0)).

If γ = 1, it is clear that there is no N-solution. Therefore,

S1(1, 1) = ∅ = V (S1(1, 1)).

The sets S1(2, γ) are obtained from the systems

−3x1 = −γ2.
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If γ = 0, we obtain
S1(2, 0) = {(0, 0)} = V (S1(2, 0)).

If γ = 1, there is no N-solution. Thus,

S1(2, 1) = ∅ = V (S1(2, 1)).

For γ = 2 the same situation is obtained. Therefore,

S1(2, 2) = ∅ = V (S1(2, 2)).

Then F ′′ = {(2, 3), (0, 0)}, and V S1 = V F ′′ = {(2, 3)}.

With the notation in Algorithm 3.7, we have s1 = (2, 3), D =
(

2
3

)
, and m = (2 0)D =

4. It is clear that there exists no w ∈ N such that wm = 1. Then (Proposition 3.5),

R(1, 0)(1, 1) = ∅ = V (R(1, 0)(1, 1)).

By similar arguments that above, it is obtained

R(1, 0)(1, β) = ∅, for β = 2, 3.

R(1, 0)(2, 0) = {0}.

R(1, 0)(2, 1) = ∅.

R(1, 0)(3, 0) = {0}.

R(1, 0)(3, β) = ∅, for β = 1, 2.

Then, we obtain V (R(1, 0)) = V F ′ with

F ′ = {(0, 0, 0, 0), (0, 4, 2, 3)}.

We conclude
V (R(1, 0)) = {(0, 4, 2, 3)}.

Now, we set α = 1 in (2). We must determine whether or not R(1, 1) = ∅ using Algorithm
3.8. We consider the homogeneous system with matrix(

1 −2 1 2
−2 −1 −1 2

)
.

A basis of the Q-vector space is b′′1 = (−3, 1, 5, 0) and b′′2 = (4, 0,−6, 1). Let a′′1 = (−3, 4),
a′′2 = (1, 0), a′′3 = (5,−6), and a′′4 = (0, 1).

We must see whether or not there exists v′′ ∈ Q2 such that v′′ · a′′1 = 1, and v′′ · a′′i ∈ N,
i = 2, 3, 4. With the notation in Algorithm 3.7, we can consider a′′1 = µ′2a

′′
2 + µ′3a

′′
3 + µ′4a

′′
4 ,

with µ′2 = −3, µ′3 = 0, and µ′4 = 4. (Notice that it is not possible that µi < 0 for every i.)
Let A′ be the matrix

A′ :=

 1 0
5 −6
0 1

 .

We need to compute the implicit equations, C ′x = 0, of the Q-vector space generated by
the column vectors of A′. We consider

C ′ = (−5 1 6).

Let
S′1 = {s ∈ N3 | C ′s = 0}.
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As before we obtain

V S′1 = {(1, 5, 0), (6, 0, 5), (5, 1, 4), (4, 2, 3), (3, 3, 2), (2, 4, 1)}.

Then

D′ :=

 1 6 5 4 3 2
5 0 1 2 3 4
0 5 4 3 2 1

 ,

and m′ := (−3 0 4)D′ = (−3 2 1 0 − 1 − 2). It is clear that there exists w′ ∈ N6

such that m′w′ = 1. We take for example w′ = (0, 0, 1, 0, 0, 0). Therefore, there exists v′′.
(Proposition 3.5.)

We take v′′ = (5, 4) a particular solution of A′x = D′w′. From

(v′ · a′′2 ,v′ · a′′3 ,v′ · a′′4) = (5, 1, 4),

we obtain
(1, 5, 1, 4) ∈ R(1, 1).

As in previous cases, we compute the sets

R(1, 1)(1, δ) = ∅, δ = 0, . . . , 4,

R(1, 1)(2, 0) = ∅,

R(1, 1)(3, δ) = ∅, δ = 0, . . . , 3.

We conclude that
V (R(1, 1)) = {(1, 5, 1, 4)}.

Similarly we obtain R(2, 0) = {0},R(2, α) = ∅, α = 1, . . . , 3, but R(2, 4) 6= ∅, (0, 2, 3) ∈
R(2, 4) (consider R(2, 4) as a subset of N3). Moreover,

R(2, 4)(2, 0) = R(2, 4)(2, 1) = R(2, 4)(3, 0) = R(2, 4)(3, 1) = R(2, 4)(3, 2) = ∅.

Then, V (R(2, 4)) = {(0, 4, 2, 3)}.
Similarly we obtain that

V (R(2, 5)) = {(1, 5, 1, 4)}
V (R(4, 0)) = {0}
V (R(4, 1)) = V (R(4, 2)) = ∅
V (R(4, 3)) = {(0, 4, 2, 3)}
V (R(4, 4)) = {(1, 5, 1, 4)}.

Therefore F = {0, (2, 6, 0, 5), (0, 4, 2, 3), (1, 5, 1, 4)} and V R = V F = F − {0} is the
Hilbert basis of the given system.

4 The general solution to a non homogeneous system

Let M be a p× q Z-matrix, and c ∈ Zp. Let

S := {s ∈ Nq |Ms = 0},

and let
R := {s ∈ Nq |Ms = c}.

Remarks 4.1. :
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1. If γ ∈ R, then
γ + S := {γ + s | s ∈ S} ⊂ R.

2. If γ,β ∈ R and γ ≤ β, then β ∈ γ + S.

Theorem 4.2. : With assumptions and notations as above, if

V R = {γ1, . . . ,γr},

then

(∗) R =
r⋃
i=1

(γi + S).

Therefore, there exists an algorithm computing all the elements in R.

Proof. The formula (∗) is clear by 4.1. Now, since it is possible to compute V R and a
generating set of S (Proposition 1.7), we get an algorithm computing all the elements in
R.

Let M ′ = (−c|M), and

S′ := {s′ ∈ Nq+1 |M ′s′ = 0}.

Denote
(V S′)0 := {s ∈ Nq | (0, s) ∈ V S′},

and
(V S′)1 := {s ∈ Nq | (1, s) ∈ V S′},

It is easy to see that V S = (V S′)0 and V R = (V S′)1. Then, we obtain the following
algorithm which satisfies Theorem 4.2.

Algorithm 4.3. : General N-solution to a linear system
Input: A system Mx = c, where M is a p× q Z-matrix and c ∈ Zp.
Output: V S and V R.
1. Take M ′ = (−c|M), and S′ := {s′ ∈ Nq+1 |M ′s′ = 0}.
2. Compute V S′ using Algorithm 2.2 or Algorithm 3.9.
3. Output V S = (V S′)0 and V R = (V S′)1 and STOP.

Remark 4.4. : Solving general systems of linear equations in nonnegative integer variables
is known to be a NP -complete problem. Then, in some situations to introduce an extra
variable may drastically increase the complexity of solving the problem. In these cases, to
compute directly V R and V S may be faster.

We will now give some examples.

Example 4.5. : Consider the following diophantine equation

x1 − 3x2 + 2x3 − 5x4 = 12.

We are going to compute the set

R = {s ∈ N4 |Ms = 12},

where
M = (1 − 3 2 − 5).

Following Algorithm 4.3, we construct the matrix

M ′ = (−12 1 − 3 2 − 5).
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We compute V S′ where
S′ = {s′ ∈ N5 |M ′s′ = 0}.

V S′ = {( 0, 1, 1, 1, 0 ), ( 0, 0, 2, 3, 0 ), ( 0, 0, 0, 5, 2 ), ( 1, 0, 0, 6, 0 ), ( 0, 0, 1, 4, 1 ),
( 0, 1, 0, 2, 1 ), ( 0, 5, 0, 0, 1 ), ( 1, 12, 0, 0, 0 ), ( 0, 3, 0, 1, 1 ),
( 1, 10, 0, 1, 0 ), ( 1, 8, 0, 2, 0 ), ( 1, 6, 0, 3, 0 ), ( 1, 4, 0, 4, 0 ),
( 1, 2, 0, 5, 0 ), ( 0, 3, 1, 0, 0 )}

Then, the semigroup S of the N-solutions to the homogeneous equation

x1 − 3x2 + 2x3 − 5x4 = 0,

is generated by

V S = (V S′)0 = {(1, 1, 1, 0), (0, 1, 4, 1), (0, 0, 5, 2), (0, 2, 3, 0),
(1, 0, 2, 1), (5, 0, 0, 1), (3, 1, 0, 0), (3, 0, 1, 1)},

and
V R = (V S′)1 = {(0, 0, 6, 0), (12, 0, 0, 0), (10, 0, 1, 0), (8, 0, 2, 0),

(6, 0, 3, 0), (4, 0, 4, 0), (2, 0, 5, 0)}.

Therefore,

R = [(0, 0, 6, 0) + S]
⋃

[(12, 0, 0, 0) + S]
⋃

[(10, 0, 1, 0) + S]
⋃

[(8, 0, 2, 0) + S]
⋃

[(6, 0, 3, 0) + S]
⋃

[(4, 0, 4, 0) + S]
⋃

[(2, 0, 5, 0) + S].

If one wants to use our implementation (see introduction): Do the following:
> sol−general−nohomo([[1,-3,2,-5]],[12]);
It will be obtained as output

[[ 0, 0, 6, 0 ], [ 12, 0, 0, 0 ], [ 10, 0, 1, 0 ], [ 8, 0, 2, 0 ], [ 6, 0, 3, 0 ], [ 4, 0, 4, 0 ],
[ 2, 0, 5, 0 ]], [[ 3, 1, 0, 0 ], [ 0, 2, 3, 0 ], [ 0, 0, 5, 2 ], [ 0, 1, 4, 1 ],
[ 1, 1, 1, 0 ], [ 1, 0, 2, 1 ], [ 3, 0, 1, 1 ], [ 5, 0, 0, 1 ]]

Example 4.6. : Consider the system{
x1 + 2x2 + 3x3 − 5x4 = 3
−2x1 − x2 + 4x3 + 5x4 = −3

Now,

V S′ = { ( 1, 1, 1, 0, 0 ), ( 0, 7, 0, 1, 2 ), ( 0, 5, 5, 0, 3 ), ( 10, 21, 0, 3, 0 ), ( 5, 14, 0, 2, 1 ) }.

Then, the semigroup S of N−solutions of the associate homogeneous diophantine equation
system is:

V S = (V S′)0 = {(7, 0, 1, 2), (5, 5, 0, 3)}.

And the N−solutions of the non homogeneous equation system are:

V R = (V S′)1 = {(1, 1, 0, 0)}

Therefore
R = (1, 1, 0, 0) + S.

Using our implementation,
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> sol−general−nohomo([[1,2,3,-5],[-2,-1,4,5]],[3,-3]);
we obtain

[ [ 1, 1, 0, 0 ] ], [ [ 7, 0, 1, 2 ], [ 5, 5, 0, 3 ] ]

Then, the semigroup S of N−solutions of the associated homogeneous system is:

S =< (7, 0, 1, 2), (5, 5, 0, 3) > .

The comparison of running times between the two proposed methods is collected in the
following table.1 We give as well the used particular solution of the considered system.
(Notice that it bounds the searching space of the particular solutions of the new systems
where some variables must be fixed.)

1All the computations have been done using MapleV R3, ADM-K6II-350, 64Mb RAM.
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Homogeneous systems Gröbner Bases Classical Integer Programming

(
3 −10 4

) 1 sec.,
s = [2, 1, 1]

3 sec.,
s = [10, 3, 0]

(
1 −3 2 −5

) 2 sec.,
s = [1, 1, 1, 0]

5 sec.,
s = [5, 0, 0, 1]

(
1 −2 1 2
−2 −1 −1 2

)
4 sec.,

s = [0, 4, 2, 3]
16 sec.,

s = [2, 6, 0, 5]

(
1 2 3 −5
−2 −1 4 5

)
5 sec.,

s = [7, 0, 1, 2]
7 sec.,

s = [5, 5, 0, 3]

(
3 −1 −2 −3
3 −7 2 −1

)
7 sec.,

s = [2, 1, 1, 1]
111 sec.,

s = [8, 6, 9, 0]

(
−4 1 0 −1 0 −2

0 −1 0 2 −3 1

)
5 sec.,

s = [0, 0, 1, 0, 0, 0]
1961 sec.,

s = [1, 8, 0, 4, 0, 0]

 −1 2 −3 0 −1
0 1 0 −3 0
−1 −2 0 0 1

 4 sec.,
s = [0, 3, 0, 1, 6]

9 sec.,
s = [0, 3, 0, 1, 6]


−2 0 −1 0 1 0

0 0 2 0 −3 1
1 −3 0 1 −1 0
2 0 0 −2 1 0

 17 sec.,
s = [1, 0, 2, 3, 4, 8]

500 sec.,
s = [1, 0, 2, 3, 4, 8]

 0 −1 2 −3 0 0
1 0 1 0 −3 0
−1 4 −2 0 0 −1

 102 sec.,
s = [2, 2, 1, 0, 1, 4]

Stop to 40000 sec.,
s = [18, 6, 3, 0, 7, 0]

(
1 2 −3 −2 −4
2 −1 −3 2 5

)
49 sec.,

s = [1, 3, 1, 2, 0]
Stop to 40000 sec.,
s = [9, 3, 5, 0, 0]

Therefore, Algorithm 4.3 has a unquestionably better computational behaviour if one
uses Semigroup Ideals and Gröbner Bases (Algorithm 2.2), than if one instead uses Classical
Linear Programming (Algorithm 3.9).
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We can conclude that the Hilbert basis of a linear diophantine system can be computed
by an algorithm based on Gröbner Bases, which is considerably faster than the traditional
Integer Programming methods.
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