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JANET BASES AND GROBNER BASES

F.J. CASTRO-JIMENEZ & M.A. MORENO-FRIAS

1. INTRODUCTION

The results of Buchberger [3] on Grébner bases in commutative polynomial rings
have been generalized by several authors (see for example [2], [5] for early treat-
ments) to the case of some rings of linear differential operators.

Independently, the work of Riquier [27] and Janet [13, 14] on the algebraic ap-
proach to the systems of partial differential equations was discovered by Pommaret
[21, 22] (see also [26]). Since then, these works and the ideas behind them have
been thoroughly explored, generalized and firmly established within the framework
of effective methods for the resolution of systems of partial differential equations
(see for example [28], [16], [10, 11], [30, 31], [32], [19], [25]).

Despite this, as far as we know, there is still no systematic comparison between
Janet bases (called by him completely integrable systems) and Grobner bases ap-
proach. Most references in the literature accept that both of them are “essentially
equivalent”.

This is the task we undertake in the present work. Concretely, we show that, un-
der certain hypothesis, when the linear differential equations have their coefficients
in a field, every completely integrable system is a Grobner basis and conversely (see
4.1.2, 4.1.3, 4.2.5, 4.2.6). This is particularly useful in the case of rings of diffe-
rential operators with constant coefficients. Being this a commutative polynomial
ring, we think we can regard Janet bases as a precedent of Grobner bases (in the
commutative case).

Of course, we cannot directly apply the result of Janet to the case of differential
equations with coefficients in a ring. This generalization does exists for the Grébner
bases theory, in the case of “general” rings of differential operators (see for example
2], [5, 6, 7, [15], 18], [12], [29)).

The authors have greatly benefited from the works of J.-F. Pommaret, F. Schwarz
and V.P. Gerdt while writing this article. We also wish to thank J.M. Tornero for
a careful reading of the manuscript.

2. MONOMIALS

Let k be a field. Let denote by M(X) the set of monic monomials of the
commutative polynomial ring k[X] = k[z1,... ,z,]. If a = (aq,... ,a,) € N we
will write X instead of 7' ---2%". In ([13]; (1920)) Janet gives a proof of the
so-called “Dickson’s lemma” and, as a consequence, he proves ([13], pp. 69-70) the
following two lemmas:

Lemma 2.1.1. Let I be an infinite subset of M(X). Then there erxists a finite
subset F' C I such that for all X € I there exists X € F such that X is divisible
by XP.
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Lemma 2.1.2. Let S C So C -+ CS; C -+ be an increasing sequence of subsets
in M(X) such that for all i, each monomial in S;11 \ S; is not divisible by a
monomial in S;. Then this sequence is finite.

2.2. JANET MODULES.

Definition 2.2.1. We say that a subset J of M(X) is a Janet module if either
J =0 or each multiple of a monomial in J lies in J:

VX e J VB € N™ we have X“1P € J.

Remark 2.2.2. Let ¢ : M(X)—N" be the canonical map ¢(X) = (aa,... , ).
J C M(X) is a Janet module if and only if ¢(J) + N™ = ¢(J).

Definition 2.2.3. Let J # () be a Janet module. A finite subset B of J is said to
be a basis of J if each monomial in J is divisible by some monomial in B.

Proposition 2.2.4. FEach Janet module has a basis.
Proof. Apply 2.1.1. O

2.3. MULTIPLICATIVE VARIABLES. CLASSES. Here we will give the definition (Ja-
net, [13], pp. 75-76) of multiplicative (and non-multiplicative) variables and the
definition of class of a monomial.

Definition 2.3.1. Let F be a finite subset of M(X) and X € F.

1. m, is said to be a multiplicative variable with respect to (or simply, for) X< in
F if for all XP € F we have B3, < a,.

2. xz;, 1 <j<n-—1,is said to be a multiplicative variable with respect to (or
simply, for) X in F if the following condition holds: for all X® € F with 3, =
Qpy o 5 Bj+1 = @jy1, we have B; < ;. We denote by mult(X®,F) the set of
multiplicative variables with respect to X in F. The variables x; ¢ mult(X*, F)
are called non-multiplicative variables for X% in F.

Definition 2.3.2. Let X* be a monomial of the finite set F C M(X). We call
class of X in F, noted by Co, F, the set

Co.7 = {X*TP| Each variable in X" belongs to mult(X*, F)}.

Remark 2.3.3. (Janet, [13], pp. 76-77) Classes corresponding to different mono-
mials are disjoint.

Definition 2.3.4. ([13], p. 79) Let F be a finite subset of M(X) and denote J
the Janet module generated by F. The set F is said to be complete if the following
holds: For all X € F and for all z; ¢ mult(X®, F) there exists XP € F such that
r; X € Cg,]:.

Let F be a complete subset of M(X). Then for each X* € F and for each
z; ¢ mult(X®, F) the only X# € F such that 7; X® € Cg, # verifies that (c,,... ,a1)
is less than (f8,,..., 1) w.r.t the lexicographical order (see [13], p. 85).

3. COMPLETELY INTEGRABLE SYSTEMS. JANET BASES

Janet considers in [13] (and [14], p. 33) the degree lexicographical order (denoted
by <deg Or < to short):

ol < 6]
@ <deg 0 <= or
‘Otl = |ﬁ| and (047“"' 7a1) <1€‘X (ﬁ’ru 7ﬁ1)a
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where <j, is the lexicographical order.

Let k be a field. We denote by k(X) (resp. k((X))) the quotient field of the poly-
nomial ring k[X] (resp. of the formal power series ring k[[X]] = k[[z1,... ,zn]]).
In this section we will consider the rings of linear differential operators k[9] =
K[D1,...,0,],Qnk) = k(X)[01,...,0,] and Qn(k) = k((X))[01,...,0,]. We
denote by R any of these three rings and by A any of the corresponding fields
k,k(X),k((X)). Let N be a left R-module.

Consider a system of (not necessarily homogeneous) linear differential equations:

S: Pi(u)=f1,...,P-(u) = f-
where P; € R, f; € N and the unknown u belonging to N. Rewrite the equation
Pj(u) = f; as
(509 (u) = 2 B=<ali) agd®(u) + f;
with au(j),as € A. The element a,(;0*) (u) (resp. > p<ali) agd®(u) + f;) is
called the first (resp. second) member of this equation. We will identify 0%*(u) with

0% and with «. When f; = 0 and if no confusion is possible we will identify the
equation Pj(u) = 0 with the linear differential operator P;.

Definition 3.1.5. ([13], p. 105) Let S be a system as above. We say that S is in
canonical form (with respect to <) if the following conditions hold:

1) aqey =1 for all j.

2) The first members of any two equations are distinct.

Definition 3.1.6. ([13], p. 106) Given a system S in canonical form and F the
set of its first members, we call principal derivative (with respect to S) each mono-
mial 0% in the Janet module generated by F. We call parametric derivatives the
remaining ones.

Definition 3.1.7. Let E = ao0%(u) = > 5, agd®(u) + f be a linear differential
equation with a, € A, f € N and aq # 0. We call support of E the set supp(E) =
{v e N"|a, # 0}. We call o the privileged exponent of E (with respect to <) and
we denote it by exp_(E) (or exp(E) to short, if no confusion is possible).

Definition 3.1.8. Let S be a system as above and denote by F the set of the
first members of S. Let E be an element of S. We call multiplicative (resp.
non-multiplicative) variable of E (in S) any of the multiplicative (resp. non-
multiplicative) variables of the first member of E (in F). The class of E will
be the class of its first member in F (see 2.3).

Definition 3.1.9. The system S is complete if F is complete (see 2.3.4).

Let S ={Fi,...,E.} be a complete system of linear homogeneous partial diffe-
rential equations and suppose the F; are in canonical form. Let us reproduce the
definition of Janet ([13], p. 107): Si, par dérivations et combinaisons, on ne peut
tirer de S aucune relation entre les seules dérivées paramétriques (et les variables
indépendantes), on dira que le systéme est completement intégrable.

Denote by I the left ideal (in R) generated by S and write A(S) = Uj_; (exp(£;)+
N™).

Definition 3.1.10. ([13], p. 107) The complete system S is said to be completely
integrable if the only element in I with support in N™\ A(S) is the zero element.
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Definition 3.1.11. Let I be a left ideal of R generated by a finite homogeneous
system S. The system S is called a Janet basis (of I) if S is completely integrable.

4. JANET BASES AND GROBNER BASES

4.1. HOMOGENEOUS SYSTEMS. The theory of Grobner bases developed by Buch-
berger [3] for commutative polynomial rings has been generalized to ideals in rings
of differential operators and in particular to ideals in R (see [6, 7], [15], [18], [12],
[29]). If I is a left ideal of R we denote by Exp(I) the set of privileged exponents
exp(P) for P in I (see 3.1.7). A finite subset {Pi,...,P.} C I is said to be a
Grébner basis of I if Exp(I) = Uj_; (exp(P;) + N").

Given a = (al,... ,a") € (N™)" we define the partition {Aq,... ,A,, A} of N"
associated to a as follows:

Fori=1,...,r A;=(a'+N")\ (UZ]A)); A=N"\(U_,A).

If E=(F, - ,E.) € R" we call partition associated to E the partition associated
t0 (exp(E), .. ,exp(Ey).

Theorem 4.1.1. (Division theorem in R ). Consider (Ey,---,E.) € R" with E; #
0,2=1,---,r. Let {Al, e ,AT,Z} the associated partition of N™. Then, for all
E € R, there exists a unique (Q1,- -+ ,Qp, R) € R"™™ such that:

1. £ = 22:1 Q:E; + R.

2. If R # 0, each monomial of R (in the variables Oy,--- ,0,) lies in A.

3. If Q; # 0, each monomial cO% of Q; (with ¢ € A), satisfy a + exp(E;) C A,.

In fact, this division theorem (and its proof) is explicit, although with a different
statement, in Janet’s work ([13], pp. 100 and 106) when the set {E1,...,E,} is
complete and in canonical form.

Proof. The proof is analogous to the commutative polynomial ring case (see for
example ([1], p.28) because the coefficients of the differential operators belong to
the field A and because the Leibnitz’s rule implies that for all a € A and o € N"™,
0%a — a0” is a differential operator of degree less or equal than |a| —1=ay+---+
a, — 1. O

Theorem 4.1.2. Let I be a left ideal of R and B = {E1,... ,E.} C I. If B is
a Janet basis of I then B is a Grobner basis of I, with respect to the monomial
ordering < on N"™.

Proof. Denote A = A(B) = Uj_,(exp(E;) + N"). Let P be in I and suppose
exp(P) ¢ A. By division theorem in R (see above) there exists R € R with
supp(R) C N™\ A, such that P— R € I and exp(P) = exp(R). So R # 0. But this
is impossible by the hypothesis (see definitions 3.1.10, 3.1.11). O

We say that a differential operator P € R is monic if the coeflicient of its
privileged monomial is 1.

Proposition 4.1.3. Let B = {E1,...,E.} be a Grébner basis of a left ideal I of
R. Suppose exp(E;) # exp(E;), for i # j, E; is monic for all i and B is complete.
Then B is a Janet basis of I.

Proof. Let R be a non zero element of I with support contained in N™ \ A(B).
Then exp(R) € Exp(I) () (N™\ A(B)). But Exp(I) = A(B). O
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Theorem 4.1.4. (Criterion for complete integrability). Let S = {E1,Es,--- ,E,}
be a subset of monic elements in R. Suppose that for all i and for all non-
multiplicative variable O for E; (in S) we have OpF; = Z;Zl A,(ji)Ej such that
the only variables in each monomial (in the variables 01,---,0y,) of Afi) are mul-
tiplicative variables for E;, ¥j =1,2,--- ,r. Then we have:

1. Forall H € R,

T
He (B, By, Ey) <= H =Y QF
=1

where the only variables of each monomial in Q; are multiplicative variables
for E; in S. Here (Ey,Es,--- ,E,) is the left ideal (of R) generated by the
E;.

2. S is completely integrable.

Proof. We can suppose exp(F,) < exp(F,_1) < --- < exp(F1). The hypothesis
implies that S is complete, exp(OxE;) = exp(A,gi(k’i))Ec(k7i)) for an unique integer
c(k,t) < i (see 2.3) and exp(A,(j;)Ej) < exp(OxE;) for j # c(k,1).

If H € (E1,E,,--- ,E,) then we have H = Y., G;E;. Each G;,i =1,---,r
can be writed as G; = Ggl) + H; where Gz(-l) is the sum of the monomials of GG; with
only multiplicative variables for E; in S. In particular H; = 0.

We have

H= Z GE; = Z GVE; + Z H,E;.
=1 1=1 =2

Let denote § = (41, - ,0,) = max {exp(H;E;),i=1,--- ,r} and ig = max{i| exp(H; E;) =
0}

We call (4,ip) the characteristic exponent of Z;zl H;E;.

We will consider on N™ x {1,--- ,r} the well ordering defined as follows:
=<9
(8,i0) < (&',i) = or

=9 and g <.
Then we can write
HioEig = a@f“ cee 6,‘;‘"Ei0 + HigEio

where a € A, exp(ad{* --- 09" E;,) = ¢ and exp(I/{;Eio) =< 0.
Suppose O is a non-multiplicative variable for E;,, then by hypothesis we can
write

Hiy By = 0B - 001 007 (04 By )+ Hiy Fig =

r
a@fll ,.,a]‘:k—l...as" ZAI(c]i?)EJ +I/{;Eio =
Jj=1

n

=Y adpr oot 09 AY) By + Hiy By,
j=1
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where the only variables in each monomial of A,(CJZZ are multiplicative variables for
E;. Then rewrite

T
ZHZEl = HioEio + Z HjEj =
=2 Jj#io
" . o T

Za@fl .,.a]‘:k—l . ..agnA,(jilEj + H; E;, + Z H,E; = ZH_;EJ
=1 Jj#io j=1
where ‘

HJ/':aaill"‘ask_l"'ag"f‘l;jil+Hj for  j#io

H, = a0 00t 00 ALY + H.
Now we will compute the characteristic exponent of this new expression:

L. For ig +1 < j <1 we have exp(H}E;) = eXp(aaf‘l g "8S"AI(CQJEJ’ +
H;E;) < max{exp(ad{ --- 92+ 1... ag"A,(j%EjL exp(H;Ej)}. We have first
exp(H,;Ej) < §, because the definition of i, and then

exp(ad? - ~3,?"“71 e 3,3‘A,(€311Eg) =(a1, a5 —1,--- o)+ exp(A;Sﬂ)oEj) <

(0417 e, 0 — 17 e aan) +exp(akEio) = 67
So, exp(H}E;) < d forig +1 < j <.
2. exp(H},Eyy) = exp(adf - 0000 AlG) By + Hiy Biy) =

max{exp(ady’ - Ot 05 AL By ), exp(Hi, Eiy)}

n kig
and then exp(H; E;,) < 0.
3. For 1 < j <ip—1 we have
exp(HéEj) = exp(ad]’ - ,52%—1 _ aﬁAglEJ + H;E;) <
max{exp(adf -+ Op* " - O A Ey), exp(H; Ej)}.
The choice of j implies that exp(H,;E;) < ¢ and, on the other hand, we have

n kio ™2

exp(adf -9 oAV ) = (a1, o =1, ap) +eXP(A1(cj2,Ej) =

exp(adft - OfF Tt 90 Oy Byy) < 4.
So, the characteristic exponent (&', i) of >, H}Ej is less than (d,49) w.r.t the
well ordering <1, which implies the assertions of the theorem.

O

Remark 4.1.5. As a consequence of this theorem, Janet develops a finite procedure
constructing a completely integrable system (i.e. a Janet basis) of a left ideal I of
R, starting from an arbitrary system of generators of I. This algorithm should be
compared to Buchberger’s algorithm computing Grobner bases. Janet’s procedure is
as follows: a) We can suppose the starting system S1 = {E1, ..., E.} complete and
in canonical form (see 3.1.9, 8.1.5). b) For each i =1,... ,r and each k such that

Ok 1s non-multiplicative for E;, write (see 4.1.1) Oy E; = Z;Zl A,(f;;)Ej + R where
1. Fach monomial in A,(f;) (in 1, ... ,0,) is formed only by multiplicative varia-
bles for E; in S;.
2. The support of Ry; is contained in N™\ A(Sy).
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¢) If all the Ry; are zero, then Sy is completely integrable (see 4.1.4). d) If there
exists Ry; # 0 then we consider the new system Ss = S; U {Ry;} and we restart.

This procedure is finite. Indeed, let S;, i = 1,2,... be the sequence of systems
obtained applying Janet’s procedure. Write F; = {exp(E)|E € S;} C N™. By 2.1.2
this sequence is stationary and the procedure is finite.

4.2. NON-HOMOGENEOUS SYSTEMS. In this section we will explain how to extend
the results of 3 and 4 to system of linear non-homogeneous differential equations.
Let S be a system of linear, non necessarily homogeneous, differential equations

Pl(u) :fla"' 7PT(U) :fr
where P; € R, f; € N and the unknown u belonging to A/. We denote by S” the
homogeneous system P;(u) = --- = P,(u) = 0 associated to S.
We will denote by E; the equation P;(u) = f; (or P;(u) — f; =0).
We identify the equation P;(u) = f; (i.e. the equation E;) with the couple
(P, fi) € R® N and we consider the R-sub-module M of R & N generated by
{(Plv fl)v ) (P’!'? f7)}

Definition 4.2.1. Let S = {Fy,--- ,E.} = {(P1, f1), - ,(Pr, fr)} be a complete
system in canonical form. Let M be the R-sub-module of R ® N generated by S.
The system S is said to be completely integrable if the following holds:

1) If (0, f) € M then f =0.

2) If (P, f) € M and P # 0 then the support of P is not contained in N™ \ A(S™).

Definition 4.2.2. Let M be the R-sub-module of R ® N generated by
S={(P, f1), -, (Pr, fr)}. We call S a Janet basis of M if S is completely inte-
grable.

Denote € the (left) R-module R® AN and 71 : £ — R the canonical projection.
As in R we have in £ the notions of privileged exponent and Grébner basis and
we have a division theorem in £.

We still denote exp : €\ ({0} & N') — N™ the map exp_ (P, f) = exp(P).

Theorem 4.2.3. (Division theorem in £). Consider (Ey,--- ,E,) € £ with E; =
(P, fi) and P, #0, i = 1,--- ,r. Let {Al, e ,AT,Z} the associated partition of
N™. Then, for all E = (P, f) € &, there exists a unique (Q1, - ,Qr, (R, g)) €
R" x € such that:

1. £ = Z::l QiEi + (R, g).

2. If R # 0, each monomial of R (in the variables Oy,--- ,0y) lies in A.

3. If Q; # 0, each monomial cO* of Q; (with c € A), satisfy o + exp(E;) C A;.

Proof. Analogous to the proof of 4.1.1. We first write P = ) __, Q;P;+ R and then
g=1r- 22:1 Qi(fi)- O]

Definition 4.2.4. Let M be a R-sub-module of £. A finite subset {(Py, f1), -, (Pm, fm)}

of M is said to be a Grobner basis of M, with respect to <, if the following two
conditions hold:

1. {Py,--, Py} is a Grobner basis of w1 (M) with respect to <.

2. Forallge N, if (0,g) € M then g = 0.

Theorem 4.2.5. Let M be a R-sub-module of £ = R & N and suppose B =
{(P1, f1)," (P, fr)} C M is a Janet basis of M. Then B Grébner basis of
M, with respect to <.



Proof. Analogous to the proof of 4.1.2, using the division theorem 4.2.3. O

Proposition 4.2.6. Let B = {Ey = (P4, f1),...,E. = (P, fr)} be a Grébner
basis of a left R-sub-module M of R & N. Suppose exp(P;) # exp(P;) for i # j,
FE; is monic for all i and B is complete. Then B is a Janet basis of M.

Proof. Suppose (P, f) € M and supp(P) C N*\ A(S"). The family {P, ..., P.} is
a Grobner basis of the ideal 1 (M) and then A(S") = Exp(m(M)). So, exp(P) €
A(S") and then P = 0. O

Theorem 4.2.7. (Criterion for complete integrability). Let S = {Ey, Ea,--- ,E,}
be a subset of monic elements in £. Suppose that for all i and for all non-

multiplicative variable Oy for E; (in S) we have OpF; = Z;:1 A,(i)Ej where the

only variables in each monomial (in the variables 01,02, ,0n) of Ag) are multi-
plicative variables for F;, ¥j =1,2,--- ,r. Then we have:

1. Forall H € &,

He (B, Ey,-- B) < H=) QF,
i=1
where the only variables of each monomial in Q; are multiplicative variables
for E; in S. Here (Ey, Ea,--- , E,) is the left R-module generated by the E;.
2. S is completely integrable.

Proof. Analogous to the proof of 4.1.4. O
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