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JANET BASES AND GRÖBNER BASES

F.J. CASTRO-JIMÉNEZ & M.A. MORENO-FRÍAS

1. Introduction

The results of Buchberger [3] on Gröbner bases in commutative polynomial rings
have been generalized by several authors (see for example [2], [5] for early treat-
ments) to the case of some rings of linear differential operators.

Independently, the work of Riquier [27] and Janet [13, 14] on the algebraic ap-
proach to the systems of partial differential equations was discovered by Pommaret
[21, 22] (see also [26]). Since then, these works and the ideas behind them have
been thoroughly explored, generalized and firmly established within the framework
of effective methods for the resolution of systems of partial differential equations
(see for example [28], [16], [10, 11], [30, 31], [32], [19], [25]).

Despite this, as far as we know, there is still no systematic comparison between
Janet bases (called by him completely integrable systems) and Gröbner bases ap-
proach. Most references in the literature accept that both of them are “essentially
equivalent”.

This is the task we undertake in the present work. Concretely, we show that, un-
der certain hypothesis, when the linear differential equations have their coefficients
in a field, every completely integrable system is a Gröbner basis and conversely (see
4.1.2, 4.1.3, 4.2.5, 4.2.6). This is particularly useful in the case of rings of diffe-
rential operators with constant coefficients. Being this a commutative polynomial
ring, we think we can regard Janet bases as a precedent of Gröbner bases (in the
commutative case).

Of course, we cannot directly apply the result of Janet to the case of differential
equations with coefficients in a ring. This generalization does exists for the Gröbner
bases theory, in the case of “general” rings of differential operators (see for example
[2], [5, 6, 7], [15], [18], [12], [29]).

The authors have greatly benefited from the works of J.-F. Pommaret, F. Schwarz
and V.P. Gerdt while writing this article. We also wish to thank J.M. Tornero for
a careful reading of the manuscript.

2. Monomials

Let k be a field. Let denote by M(X) the set of monic monomials of the
commutative polynomial ring k[X] = k[x1, . . . , xn]. If α = (α1, . . . , αn) ∈ Nn we
will write Xα instead of xα1

1 · · ·xαn
n . In ([13]; (1920)) Janet gives a proof of the

so-called “Dickson’s lemma” and, as a consequence, he proves ([13], pp. 69-70) the
following two lemmas:

Lemma 2.1.1. Let I be an infinite subset of M(X). Then there exists a finite
subset F ⊂ I such that for all Xα ∈ I there exists Xβ ∈ F such that Xα is divisible
by Xβ.
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Lemma 2.1.2. Let S1 ⊂ S2 ⊂ · · · ⊂ Si ⊂ · · · be an increasing sequence of subsets
in M(X) such that for all i, each monomial in Si+1 \ Si is not divisible by a
monomial in Si. Then this sequence is finite.

2.2. Janet modules.

Definition 2.2.1. We say that a subset J of M(X) is a Janet module if either
J = ∅ or each multiple of a monomial in J lies in J :

∀Xα ∈ J, ∀β ∈ Nn we have Xα+β ∈ J.
Remark 2.2.2. Let φ :M(X)→Nn be the canonical map φ(Xα) = (α1, . . . , αn).
J ⊂M(X) is a Janet module if and only if φ(J) + Nn = φ(J).

Definition 2.2.3. Let J 6= ∅ be a Janet module. A finite subset B of J is said to
be a basis of J if each monomial in J is divisible by some monomial in B.

Proposition 2.2.4. Each Janet module has a basis.

Proof. Apply 2.1.1.

2.3. Multiplicative variables. Classes. Here we will give the definition (Ja-
net, [13], pp. 75-76) of multiplicative (and non-multiplicative) variables and the
definition of class of a monomial.

Definition 2.3.1. Let F be a finite subset of M(X) and Xα ∈ F .
1. xn is said to be a multiplicative variable with respect to (or simply, for) Xα in
F if for all Xβ ∈ F we have βn ≤ αn.
2. xj, 1 ≤ j ≤ n − 1, is said to be a multiplicative variable with respect to (or
simply, for) Xα in F if the following condition holds: for all Xβ ∈ F with βn =
αn, · · · , βj+1 = αj+1, we have βj ≤ αj. We denote by mult(Xα,F) the set of
multiplicative variables with respect to Xα in F . The variables xi 6∈ mult(Xα,F)
are called non-multiplicative variables for Xα in F .

Definition 2.3.2. Let Xα be a monomial of the finite set F ⊂ M(X). We call
class of Xα in F , noted by Cα,F , the set

Cα,F = {Xα+β | Each variable in Xβ belongs to mult(Xα,F)}.
Remark 2.3.3. (Janet, [13], pp. 76-77) Classes corresponding to different mono-
mials are disjoint.

Definition 2.3.4. ([13], p. 79) Let F be a finite subset of M(X) and denote J
the Janet module generated by F . The set F is said to be complete if the following
holds: For all Xα ∈ F and for all xi 6∈ mult(Xα,F) there exists Xβ ∈ F such that
xiX

α ∈ Cβ,F .

Let F be a complete subset of M(X). Then for each Xα ∈ F and for each
xi 6∈ mult(Xα,F) the onlyXβ ∈ F such that xiXα ∈ Cβ,F verifies that (αn, . . . , α1)
is less than (βn, . . . , β1) w.r.t the lexicographical order (see [13], p. 85).

3. Completely integrable systems. Janet bases

Janet considers in [13] (and [14], p. 33) the degree lexicographical order (denoted
by <deg or ≺ to short):

α <deg β ⇐⇒

 |α| < |β|or
|α| = |β| and (αn, · · · , α1) <lex (βn, · · · , β1),
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where <lex is the lexicographical order.
Let k be a field. We denote by k(X) (resp. k((X))) the quotient field of the poly-

nomial ring k[X] (resp. of the formal power series ring k[[X]] = k[[x1, . . . , xn]]).
In this section we will consider the rings of linear differential operators k[∂] =
k[∂1, . . . , ∂n], Qn(k) = k(X)[∂1, . . . , ∂n] and Q̂n(k) = k((X))[∂1, . . . , ∂n]. We
denote by R any of these three rings and by A any of the corresponding fields
k,k(X),k((X)). Let N be a left R-module.

Consider a system of (not necessarily homogeneous) linear differential equations:

S : P1(u) = f1, . . . , Pr(u) = fr

where Pi ∈ R, fi ∈ N and the unknown u belonging to N . Rewrite the equation
Pj(u) = fj as

aα(j)∂
α(j)(u) =

∑
β≺α(j) aβ∂

β(u) + fj

with aα(j), aβ ∈ A. The element aα(j)∂
α(j)(u) (resp.

∑
β≺α(j) aβ∂

β(u) + fj) is
called the first (resp. second) member of this equation. We will identify ∂α(u) with
∂α and with α. When fj = 0 and if no confusion is possible we will identify the
equation Pj(u) = 0 with the linear differential operator Pj .

Definition 3.1.5. ([13], p. 105) Let S be a system as above. We say that S is in
canonical form (with respect to ≺) if the following conditions hold:
1) aα(j) = 1 for all j.
2) The first members of any two equations are distinct.

Definition 3.1.6. ([13], p. 106) Given a system S in canonical form and F the
set of its first members, we call principal derivative (with respect to S) each mono-
mial ∂α in the Janet module generated by F . We call parametric derivatives the
remaining ones.

Definition 3.1.7. Let E ≡ aα∂
α(u) =

∑
β≺α aβ∂

β(u) + f be a linear differential
equation with aγ ∈ A, f ∈ N and aα 6= 0. We call support of E the set supp(E) =
{γ ∈ Nn | aγ 6= 0}. We call α the privileged exponent of E (with respect to ≺) and
we denote it by exp≺(E) (or exp(E) to short, if no confusion is possible).

Definition 3.1.8. Let S be a system as above and denote by F the set of the
first members of S. Let E be an element of S. We call multiplicative (resp.
non-multiplicative) variable of E (in S) any of the multiplicative (resp. non-
multiplicative) variables of the first member of E (in F). The class of E will
be the class of its first member in F (see 2.3).

Definition 3.1.9. The system S is complete if F is complete (see 2.3.4).

Let S = {E1, . . . , Er} be a complete system of linear homogeneous partial diffe-
rential equations and suppose the Ei are in canonical form. Let us reproduce the
definition of Janet ([13], p. 107): Si, par dérivations et combinaisons, on ne peut
tirer de S aucune relation entre les seules dérivées paramétriques (et les variables
indépendantes), on dira que le système est complètement intégrable.

Denote by I the left ideal (inR) generated by S and write ∆(S) = ∪rj=1(exp(Ej)+
Nn).

Definition 3.1.10. ([13], p. 107) The complete system S is said to be completely
integrable if the only element in I with support in Nn \∆(S) is the zero element.
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Definition 3.1.11. Let I be a left ideal of R generated by a finite homogeneous
system S. The system S is called a Janet basis (of I) if S is completely integrable.

4. Janet bases and Gröbner bases

4.1. Homogeneous systems. The theory of Gröbner bases developed by Buch-
berger [3] for commutative polynomial rings has been generalized to ideals in rings
of differential operators and in particular to ideals in R (see [6, 7], [15], [18], [12],
[29]). If I is a left ideal of R we denote by Exp(I) the set of privileged exponents
exp(P ) for P in I (see 3.1.7). A finite subset {P1, . . . , Pr} ⊂ I is said to be a
Gröbner basis of I if Exp(I) = ∪rj=1(exp(Pj) + Nn).

Given α = (α1, . . . , αr) ∈ (Nn)r we define the partition {∆1, . . . ,∆r,∆} of Nn

associated to α as follows:

For i = 1, . . . , r; ∆i = (αi + Nn) \ (∪i−1
j=1∆j); ∆ = Nn \ (∪ri=1∆i).

If E = (E1, · · · , Er) ∈ Rr we call partition associated to E the partition associated
to (exp(E1), . . . , exp(Er)).

Theorem 4.1.1. (Division theorem in R). Consider (E1, · · · , Er) ∈ Rr with Ei 6=
0, i = 1, · · · , r. Let

{
∆1, · · · ,∆r,∆

}
the associated partition of Nn. Then, for all

E ∈ R, there exists a unique (Q1, · · · , Qr, R) ∈ Rr+1 such that:
1. E =

∑r
i=1QiEi +R.

2. If R 6= 0, each monomial of R (in the variables ∂1, · · · , ∂n) lies in ∆.
3. If Qi 6= 0, each monomial c∂α of Qi (with c ∈ A), satisfy α+ exp(Ei) ⊆ ∆i.

In fact, this division theorem (and its proof) is explicit, although with a different
statement, in Janet’s work ([13], pp. 100 and 106) when the set {E1, . . . , Er} is
complete and in canonical form.

Proof. The proof is analogous to the commutative polynomial ring case (see for
example ([1], p.28) because the coefficients of the differential operators belong to
the field A and because the Leibnitz’s rule implies that for all a ∈ A and α ∈ Nn,
∂αa−a∂α is a differential operator of degree less or equal than |α|− 1 = α1 + · · ·+
αn − 1.

Theorem 4.1.2. Let I be a left ideal of R and B = {E1, . . . , Er} ⊂ I. If B is
a Janet basis of I then B is a Gröbner basis of I, with respect to the monomial
ordering ≺ on Nn.

Proof. Denote ∆ = ∆(B) = ∪rj=1(exp(Ej) + Nn). Let P be in I and suppose
exp(P ) 6∈ ∆. By division theorem in R (see above) there exists R ∈ R with
supp(R) ⊂ Nn \∆, such that P −R ∈ I and exp(P ) = exp(R). So R 6= 0. But this
is impossible by the hypothesis (see definitions 3.1.10, 3.1.11).

We say that a differential operator P ∈ R is monic if the coefficient of its
privileged monomial is 1.

Proposition 4.1.3. Let B = {E1, . . . , Er} be a Gröbner basis of a left ideal I of
R. Suppose exp(Ei) 6= exp(Ej), for i 6= j, Ei is monic for all i and B is complete.
Then B is a Janet basis of I.

Proof. Let R be a non zero element of I with support contained in Nn \ ∆(B).
Then exp(R) ∈ Exp(I)

⋂
(Nn \∆(B)). But Exp(I) = ∆(B).
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Theorem 4.1.4. (Criterion for complete integrability). Let S = {E1, E2, · · · , Er}
be a subset of monic elements in R. Suppose that for all i and for all non-
multiplicative variable ∂k for Ei (in S) we have ∂kEi =

∑r
j=1A

(j)
ki Ej such that

the only variables in each monomial (in the variables ∂1, · · · , ∂n) of A(j)
ki are mul-

tiplicative variables for Ej , ∀j = 1, 2, · · · , r. Then we have:

1. For all H ∈ R,

H ∈ 〈E1, E2, · · · , Er〉 ⇐⇒ H =
r∑
i=1

QiEi

where the only variables of each monomial in Qi are multiplicative variables
for Ei in S. Here 〈E1, E2, · · · , Er〉 is the left ideal (of R) generated by the
Ei.

2. S is completely integrable.

Proof. We can suppose exp(Er) ≺ exp(Er−1) ≺ · · · ≺ exp(E1). The hypothesis
implies that S is complete, exp(∂kEi) = exp(A(c(k,i))

ki Ec(k,i)) for an unique integer
c(k, i) < i (see 2.3) and exp(A(j)

ki Ej) ≺ exp(∂kEi) for j 6= c(k, i).
If H ∈ 〈E1, E2, · · · , Er〉 then we have H =

∑r
i=1GiEi. Each Gi , i = 1, · · · , r

can be writed as Gi = G
(1)
i +Hi where G(1)

i is the sum of the monomials of Gi with
only multiplicative variables for Ei in S. In particular H1 = 0.

We have

H =
r∑
i=1

GiEi =
r∑
i=1

G
(1)
i Ei +

r∑
i=2

HiEi.

Let denote δ = (δ1, · · · , δn) = max {exp(HiEi), i = 1, · · · , r} and i0 = max{i | exp(HiEi) =
δ}.

We call (δ, i0) the characteristic exponent of
∑r
j=1HjEj .

We will consider on Nn × {1, · · · , r} the well ordering defined as follows:

(δ, i0) C (δ′, i′0)⇐⇒

 δ ≺ δ′
or

δ = δ′ and i0 < i′0.

Then we can write

Hi0Ei0 = a∂α1
1 · · · ∂αn

n Ei0 + Ĥi0Ei0

where a ∈ A, exp(a∂α1
1 · · · ∂αn

n Ei0) = δ and exp(Ĥi0Ei0) ≺ δ.
Suppose ∂k is a non-multiplicative variable for Ei0 , then by hypothesis we can

write

Hi0Ei0 = a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n (∂kEi0) + Ĥi0Ei0 =

a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n

 r∑
j=1

A
(j)
ki0
Ej

+ Ĥi0Ei0 =

=
r∑
j=1

a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n A
(j)
ki0
Ej + Ĥi0Ei0
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where the only variables in each monomial of A(j)
ki0

are multiplicative variables for
Ej . Then rewrite

r∑
i=2

HiEi = Hi0Ei0 +
∑
j 6=i0

HjEj =

r∑
j=1

a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n A
(j)
ki0
Ej + Ĥi0Ei0 +

∑
j 6=i0

HjEj =
r∑
j=1

H ′jEj

where 
H ′j = a∂α1

1 · · · ∂
αk−1
k · · · ∂αn

n A
(j)
ki0

+Hj for j 6= i0

H ′i0 = a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n A
(i0)
ki0

+ Ĥi0 .

Now we will compute the characteristic exponent of this new expression:

1. For i0 + 1 ≤ j ≤ r we have exp(H ′jEj) = exp(a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n A
(j)
ki0
Ej +

HjEj) � max{exp(a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n A
(j)
ki0
Ej), exp(HjEj)}. We have first

exp(HjEj) ≺ δ, because the definition of i0, and then

exp(a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n A
(j)
ki0
Ej) = (α1, · · · , αk − 1, · · · , αn) + exp(A(j)

ki0
Ej) ≺

(α1, · · · , αk − 1, · · · , αn) + exp(∂kEi0) = δ,

So, exp(H ′jEj) ≺ δ for i0 + 1 ≤ j ≤ r.
2. exp(H ′i0Ei0) = exp(a∂α1

1 · · · ∂
αk−1
k · · · ∂αn

n A
(i0)
ki0

Ei0 + Ĥi0Ei0) �

max{exp(a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n A
(i0)
ki0

Ei0), exp(Ĥi0Ei0)}

and then exp(H ′i0Ei0) ≺ δ.
3. For 1 ≤ j ≤ i0 − 1 we have

exp(H ′jEj) = exp(a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n A
(j)
ki0
Ej +HjEj) ≺

max{exp(a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n A
(j)
ki0
Ej), exp(HjEj)}.

The choice of j implies that exp(HjEj) � δ and, on the other hand, we have

exp(a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n A
(j)
ki0
Ej) = (α1, · · · , αk − 1, · · · , αn) + exp(A(j)

ki0
Ej) �

exp(a∂α1
1 · · · ∂

αk−1
k · · · ∂αn

n ∂kEi0) � δ.
So, the characteristic exponent (δ′, i′0) of

∑
j H
′
jEj is less than (δ, i0) w.r.t the

well ordering C, which implies the assertions of the theorem.

Remark 4.1.5. As a consequence of this theorem, Janet develops a finite procedure
constructing a completely integrable system (i.e. a Janet basis) of a left ideal I of
R, starting from an arbitrary system of generators of I. This algorithm should be
compared to Buchberger’s algorithm computing Gröbner bases. Janet’s procedure is
as follows: a) We can suppose the starting system S1 = {E1, . . . , Er} complete and
in canonical form (see 3.1.9, 3.1.5). b) For each i = 1, . . . , r and each k such that
∂k is non-multiplicative for Ei, write (see 4.1.1) ∂kEi =

∑r
j=1A

(j)
ki Ej +Rik where

1. Each monomial in A(j)
ki (in ∂1, . . . , ∂n) is formed only by multiplicative varia-

bles for Ej in S1.
2. The support of Rki is contained in Nn \∆(S1).
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c) If all the Rki are zero, then S1 is completely integrable (see 4.1.4). d) If there
exists Rki 6= 0 then we consider the new system S2 = S1 ∪ {Rki} and we restart.

This procedure is finite. Indeed, let Si, i = 1, 2, . . . be the sequence of systems
obtained applying Janet’s procedure. Write Fi = {exp(E) |E ∈ Si} ⊂ Nn. By 2.1.2
this sequence is stationary and the procedure is finite.

4.2. Non-homogeneous systems. In this section we will explain how to extend
the results of 3 and 4 to system of linear non-homogeneous differential equations.

Let S be a system of linear, non necessarily homogeneous, differential equations

P1(u) = f1, · · · , Pr(u) = fr

where Pi ∈ R, fi ∈ N and the unknown u belonging to N . We denote by Sh the
homogeneous system P1(u) = · · · = Pr(u) = 0 associated to S.

We will denote by Ei the equation Pi(u) = fi (or Pi(u)− fi = 0).
We identify the equation Pi(u) = fi (i.e. the equation Ei) with the couple

(Pi, fi) ∈ R ⊕ N and we consider the R-sub-module M of R ⊕ N generated by
{(P1, f1), · · · , (Pr, fr)}.

Definition 4.2.1. Let S = {E1, · · · , Er} = {(P1, f1), · · · , (Pr, fr)} be a complete
system in canonical form. Let M be the R-sub-module of R ⊕ N generated by S.
The system S is said to be completely integrable if the following holds:
1) If (0, f) ∈M then f = 0.
2) If (P, f) ∈M and P 6= 0 then the support of P is not contained in Nn \∆(Sh).

Definition 4.2.2. Let M be the R-sub-module of R⊕N generated by
S = {(P1, f1), · · · , (Pr, fr)} . We call S a Janet basis of M if S is completely inte-
grable.

Denote E the (left) R-module R⊕N and π1 : E −→ R the canonical projection.
As in R we have in E the notions of privileged exponent and Gröbner basis and

we have a division theorem in E .
We still denote exp : E \ ({0} ⊕ N ) −→ Nn the map exp≺(P, f) = exp(P ).

Theorem 4.2.3. (Division theorem in E). Consider (E1, · · · , Er) ∈ Er with Ei =
(Pi, fi) and Pi 6= 0, i = 1, · · · , r. Let

{
∆1, · · · ,∆r,∆

}
the associated partition of

Nn. Then, for all E = (P, f) ∈ E, there exists a unique (Q1, · · · , Qr, (R, g)) ∈
Rr × E such that:

1. E =
∑r
i=1QiEi + (R, g).

2. If R 6= 0, each monomial of R (in the variables ∂1, · · · , ∂n) lies in ∆.
3. If Qi 6= 0, each monomial c∂α of Qi (with c ∈ A), satisfy α+ exp(Ei) ⊆ ∆i.

Proof. Analogous to the proof of 4.1.1. We first write P =
∑r
i=1QiPi+R and then

g = f −
∑r
i=1Qi(fi).

Definition 4.2.4. Let M be a R-sub-module of E. A finite subset {(P1, f1), · · · , (Pm, fm)}
of M is said to be a Gröbner basis of M , with respect to ≺, if the following two
conditions hold:

1. {P1, · · · , Pm} is a Gröbner basis of π1(M) with respect to ≺.
2. For all g ∈ N , if (0, g) ∈M then g = 0.

Theorem 4.2.5. Let M be a R-sub-module of E = R ⊕ N and suppose B =
{(P1, f1), · · · , (Pr, fr)} ⊆ M is a Janet basis of M . Then B Gröbner basis of
M , with respect to ≺.
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Proof. Analogous to the proof of 4.1.2, using the division theorem 4.2.3.

Proposition 4.2.6. Let B = {E1 = (P1, f1), . . . , Er = (Pr, fr)} be a Gröbner
basis of a left R-sub-module M of R ⊕ N . Suppose exp(Pi) 6= exp(Pj) for i 6= j,
Ei is monic for all i and B is complete. Then B is a Janet basis of M .

Proof. Suppose (P, f) ∈M and supp(P ) ⊂ Nn\∆(Sh). The family {P1, . . . , Pr} is
a Gröbner basis of the ideal π1(M) and then ∆(Sh) = Exp(π1(M)). So, exp(P ) ∈
∆(Sh) and then P = 0.

Theorem 4.2.7. (Criterion for complete integrability). Let S = {E1, E2, · · · , Er}
be a subset of monic elements in E. Suppose that for all i and for all non-
multiplicative variable ∂k for Ei (in S) we have ∂kEi =

∑r
j=1A

(j)
ki Ej where the

only variables in each monomial (in the variables ∂1, ∂2, · · · , ∂n) of A(j)
ki are multi-

plicative variables for Ej , ∀j = 1, 2, · · · , r. Then we have:
1. For all H ∈ E,

H ∈ 〈E1, E2, · · · , Er〉 ⇐⇒ H =
r∑
i=1

QiEi

where the only variables of each monomial in Qi are multiplicative variables
for Ei in S. Here 〈E1, E2, · · · , Er〉 is the left R-module generated by the Ei.

2. S is completely integrable.

Proof. Analogous to the proof of 4.1.4.
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