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Abstract

The Graver basis of a semigroup ideal is computed from a minimal
generating set for its Lawrence lifting. A combinatorial characterization
of the minimal degrees of a Lawrence ideal is given as well as a degree
bound for its minimal first syzygies.
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Introduction

The Graver basis of a toric ideal can be computed by using any reduced Grobner
basis of its Lawrence lifting [6]. Concretely, it is enough to substitute some vari-
ables by 1 in the elements of this Grébner basis. In section 1, we show how this
method can be used, taking a more general class of ideals. This generalization
consists of admiting torsion in the associated semigroup.

The Graver basis of a Lawrence ideal is a minimal system of generators,
hence this minimal system is unique except scalar multiples. In this paper, we
characterize the degrees of this system by means of a property of symmetry
for the connected components of some simplicial complexes (Proposition 7).
The property is described in the context of integer programming (Definition 6).
The result provides an algorithm for computing the minimal generating set for a
Lawrence ideal (Algorithm 3). Our characterization is obtained from the general
for the minimal degrees of a semigroup ideal that appeared in [3, Therorem 1].
Concretely, we use the effective version of this result, [1, Theorem 3.11].

On the other hand, using the techniques in [5], we study the first syzygies
of Lawrence ideals. As an application, we give an explicit degree bound for the
minimal first syzygies of these ideals (Theorem 13).
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1 Graver Basis and the Lawrence Lifting of Semi-
groups

Let
SCZ”@Z/mZ@---@Z/ahZ

be a finitely generated semigroup with zero element, and {ny,... ,n,.} C S a
set of generators for S.

Fixing k as a commutative field, one can consider the semigroup k—algebra
associated to S, k[S] = ®mesx™ and k[X] = k[z1,. .. ,z,], the polynomial ring
in r indeterminates where the S—degree of z; is equal to n;. We denote by X,
where o = (a1,...,a,) € N”, the monomial z{* ---z%. Let > be the partial
natural order on IN".

The k—algebra epimorphism,

¢ k[X] — k[S],

defined by (z;) = x™, is an S—graded homomorphism of zero degree, and
I = ker(p) is a homogeneous ideal, which we shall call the ideal of S.
It is well-known ([4]) that

B= {X“—Xﬁliami :Xr:ﬁini, ai, Bi 20}

i=1 i=1

is a set of generators for I. In this paper we will consider systems of pure
binomial generators, i.e. subsets of 5 only.

In a semigroup ideal there are some special binomials: X* — X7 is called
primitive if there exists no binomial X — X7 in the ideal such that @ > o
and 3> f'. Note that X2 divides X iff a > o'

Now, we can consider

Grr = {X* - X" € I| X* — X7 is primitive}
This set is a finite system of generators for I and it is called Graver basis for I
(see [6]).

One way to obtain the Graver basis is by using diophantine equations in
congruence. If one take the ((n 4+ h) x r)—matrix

A= (nafnal- - Iny) € Mty xr(Z),

considering n,... ,n, € Z"*" one can prove X® — XP € Gry iff (o, f) is a
> —minimal N—solution, with a # (3, of the system

(Al — A)Y =0 moda,

where the last h rows of this system are in congruence.



However, it is more useful for explicit computations to use the generaliza-
tion of the techniques in [6]. Concretly, to compute Gr; we construct a new
semigroup

S'=<(n1,e1),.--,(np,e),(0,e1),...,(0,e,) SCZ"®Z)a1 & DZ/ap DL"

with {e1,... , e, } the standard coordinate vectors in Q", which one calls Lawrence
Lifting of S.
Generally, the semigroups like S” are called Lawrence semigroups. In this
section, we denote kg/[X] = k[z1,... ,Zr, Trt1,-.. ,22,] and Is the ideal of S'.
The relation between Gry and Gms, is the following;:

Proposition 1. Let
SCZ”@Z/alZGB---@Z/ahZ

be a finitely generated semigroup with zero element and let S’ be its Lawrence
lifting. Then

G’I‘I:{f(l‘l,...,l'r,].,...,].) | fEG’I‘IS,}.

Proof. Tt is a generalization for non torsion free semigroups of [6, Algorithm
7.2] O

The new semigroup S’, like all Lawrence semigroups, satisfies the following
theorem:

Theorem 2. For a Lawrence semigroup, S’, the following sets coincide:
1. any minimal system of generators for Is: (except scalar multiples)
2. the Graver basis for Ig,
3. the universal Grébner basis for Ig,
4. any reduced Grébner basis for Ig.

Proof. Tt is a generalization for non torsion free semigroups of [6, Theorem
7.1]. O

Corollary 3. For Lawrence ideal, except scalar multiples:
e Only a minimal system of generators exists.
e Only a reduced Grébner basis exists.

Using this Theorem and Proposition 1, one has an algorithm based in [6,
Algorithm 7.2] computing the Graver basis for Is.

Algorithm 1. Graver Basis
In: Lawrence lifting of semigroup S, S’
Out: Graver basis of I.



1. Compute the minimal set of generators of Is: € kgi[X].
2. Take H = {f(zx1,...,2,,1,...,1) | f€Grr,}.
3. GT‘[ =H.

There are different algorithms to compute Is: using Grébner basis (see [7]).

2 Combinatoric Results over Lawrence Ideals
For the following sections, we fix the Lawrence semigroup
S=<ni,...,npnl ... 05, >CZL"®ZLjay & ®Z/ap &ZL"

where n} = (n;,e;) forall i = 1,...,r, and n}, = (0,e;_,), Vi=r+1,...,2r.
Thus, A = {1,...,r,7+1,...,2r}. Note that SN(—=S) = {0}. One can consider
the simplicial complex

A, ={FCcAlm—nl €S},

where nn = >, nj. Notice that, if F' is a maximal face in A,,, then there is
a monomial of degree m with support F'.
We denote by sym() to the function

t+r , i1 <r
1—Tr , i>Tr

sym(i) = { e

Let A C A, set sym(A) := {sym(i)|i € A}. In the following lemma we prove an
important property of the simplicial complexes A,, associated to a Lawrence
semigroup.

Lemma 4. If {i} € Ay, and m =3, vjn);, wherei ¢ G C A, then sym(i) €
G.

Proof. {i} € A, implies that m—n} € S. Thus, if n} = (x,¢;) then (h+n+I)—th
coordinate of m is non null. Since i ¢ G and m = 3, v;n; , it is clear that
sym(i) € G. O

Now we can write the following Proposition:
Proposition 5. Let A,, be non connected. Then:

1. A, = C Usym(C), where C and sym(C) are the only two connected
components of A,,.

2.1<4C<r.

3. C and sym(C) are full subcomplezes.



Proof. 1. Let A, B be two different connected components of A,,, then AN
B =0and m = ), an; = > .5 Bin;. Using Lemma 4 one obtains
sym(A) C B and sym(B) C A. As sym/() is an idempotent function, the
equalities are true.

2. We know C U sym(C) C A. Then if C > r, 4A > 2r, but this is not
possible.

3. Suppose C is not a full subcomplex, in that case there exist A, B C C' max-
imal faces of C, such that A # B and 3o, 3; € N\ {0}, m = >, , anj =
> i Bing:

Let i € A and i ¢ B, then sym(i) € B. We have i, sym(i) € C, but this is
not possible.
O

Considering the set A = {i1,... ,is} C A, we denote

N(A) = (@i, ai,) € (N\{OD| Y agni =D @iy,
j=1

j=1

Note that

N(A) = {a € N°| ( (nf, _"'sym(il))|'-'|(”§s _nlsym(is)) )a =0, a> (1,1,...

By Dickson’s lemma, the set
H(A) = {a € N(A)| @ is minimal for >}
is finite.

Definition 6. Let A = {i1,...,is} C A and m € S. We shall say A is
m—symmetrical if the following conditions are satisfied:

1. Iy -5 i) € H(A) such that m = 377 ain

!
2. (atys... on,)  N(A), VA = {I1,... I} C A 1<t<s—1

Qg

In this case, we denote M, (A) = 3;:"11 ey

Proposition 7. Let S be a Lawrence semigroup, and let m € S. The following
conditions are equivalent:

1. m is a minimal degree.
2. AC C A m—symmetrical.

Proof. Note that if S is a Lawrence semigroup, our concept of m—symmetrical
is equivalent to the concept of m—chain isolating C' from A \ C appears in [1].
The proof of this Proposition is analogous to [1, Theorem 3.11]. O



Corollary 8.
{Mpn(C) = My (sym(C))|m € S and C' is m—symmetrical}
is a minimal set of generators for I.
Proof. See [1, Theorem 2.5]. O

Corollary 9. If I is a Lawrence ideal, for any m € S minimal degree, there
ezists a unique binomial of degree m in the generating set.

Let C C A, to determine whether there exists m € S such that C is
m—symmetrical, we can use the following algorithm.

Algorithm 2. m—symmetrical Algorithm

In: C ={iy,...,is} CA.

Out: Detect whether there exists m € S such that C is m—symmetrical, and,
in the case of this being so, all the possible m’s, M, (C) and M, (sym(C))
return.

1. If CNsym(C) # 0, then there exists no m, STOP.
2. Compute H(C) (see Algorithm in section 1 of [5]).
3. Take

T = H(C)\{a € H(C)|3C" = {l1,... ,l;} C C and (aq,, ... ,a1,) € N(C"),t < s}.

4. If T =0, then there exists no m, STOP.

5. For each o € T, C is m—symmetrical for m = ainj, + --- + asnj,
M (C) =z -2 and My, (sym(C)) = a:;'“ylm(il) . -a:;'“ysm(is).

To finish this section, a combinatorial algorithm computing the ideal of a
Lawrence semigroup is given.

Algorithm 3. Minimal Generators
In: S:=<(ny,e1),...,(nr,e.),(0,e1),...,(0,e.) > Lawrence semigroup.
Out: Minimal system of generators for I.

1. G=0.
. Let C(A) ={C € P(A)|1 <4C <r}.
. For each C € C(A) do

Lo

(a) Using algorithm 2 the elements m € S such that C is m—symmetrical
are computed.

(b) G =GU{Mp(C) — My, (sym(C))|C is m—symmetrical}.

4. G is the minimal system of generators for I.



3 Combinatoric Results over First Syzygies of
Lawrence Ideals

In this section, we are going to make a combinatorial study of the first syzygies
of our ideal I. First of all, we introduce the concept of F'—cavity (see [5] for
details).

Definition 10. Let m € S and F = {iy,... ,it} C A such that $F > 3, and let
o be a polygon whose vertex set is F. We say o is an F—cavity of A, if the
following conditions are satisfied:

1. F; € Ay, Vi=1,...,t where
Fi ={ij,ij-1},Vi=1,...,t =1, and F, = {is,i1},
are the faces of o.
2. If F; #F' C F, §F' > 2, then F' ¢ A,.

The relation between the F'—cavities and the degrees of the first syzygies is
the following ([5, Lemma 13]):

Lemma 11. Let m € S such that Hy(A,,) # 0. Then, there is o an F— cavity
of A, with faces F; satisfying

t

c= Zeij S ﬂl(Am) \ {0},

i=1
for some e; = x1,Vj=1,...,t.

The particular nature of the Lawrence semigroups permit the following re-
sult:

Proposition 12. In the conditions of Lemma 11,
3<HF <5.
Moreover, o has one of the shapes in figure 1.

Proof. Let 0 = {F},...F;} be a F—cavity of A, as in Definition 10, then there

is a® = (V... ,ag?_t+2) € NCr=t+2)t gatisfying
( _ / 1), 4
m = nfp +Z]~EG1 a{ n';
_ ' 2) 1
m = nF2+Zj€G2 oy n;
_ ' t—1)
m np,_ + Zjth(ﬂ) a; n
t) 1
[ m = 0+ eq, @)
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Figure 1: Possible F'—cavities

where G; := (A\ F)UF, forl = 1,...,t. By Lemma 4, i € F \ F; implies
sym(i) € G;. Therefore, Ujcp\r,sym(i) C Gy for all I = 1,... ¢, and in partic-
ular, Up;nr—psym(Fy) C Gi.

First, we are going to prove the F'—cavities where {F > 5 do not contain a
vertex and its symmetry. Suppose, for example, i1, sym(i1) € F. Since {F > 5,
there is an [, such that i1, sym(i1) ¢ F;. Then, one can write m without using
ngl,n’sym(il). But it is impossible.

Suppose now that §F > 5. Notice that the following sets are in A,
Sym(UFjﬁFI:(Z)Fj), Sym(UFjﬁF2:(Z)Fj), sty Sym(UFjﬁFi:(z)Fj)a

Full Top (base)
U sym(Fs), Fo U sym(Fy),... ,Fr_o Usym(Fy;), Fi_1 U sym(Fy), F; U sym(FQ)J

Full Sides

Thus, A, contains a prism with an empty top {i1,...,4:} (like Figure 2), full
base {sym(i1),...,sym(i)}, and full sides. The topological invariance of the
simplicial homology groups yields ¢ = 0 as an element in Ffl(Am). This is a
contradiction with lemma 11. Therefore, fF < 5.

We have just seen the unique possibility for an F'—cavity with {F = 5 in
Figure 1. If §F is equal to 3 or 4, with similar technical reasonings, one can
prove the only possibilities for the F'—cavities are in that figure.

O

The preceding result let us improve, for Lawrence Semigroups, the bound
degree that appears in [5]. Here, A = (n}]...|n},) and

Al = sup; Y |ai;]
i

Theorem 13. Let S be a Lawrence semigroup, and let m € S be a degree of
an element of a minimal system of homogeneous generators for the first syzygy
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Figure 2: §F > 5.

module of k[S] with S a Lawrence semigroup. Then Ja € N?" such that m =
> ain} and |||y is at most

(1+2 max {lai[} +4||A|* @+ + 9.
=1,..,

Proof. Analogous to [5, Theorem 23] (see also [2]). O

4 Examples

We are going to illustrate the computation of the minimal systems of generators
for a Lawrence ideal and the F'—cavities associated to its first syzygies.
Let S C Z @ Z/3 ® Z> be the Lawrence semigroup generated by

< (07 27 1707 0)7 (27 1707 170)7 (27 27 0707 1)7 (0707 17 07 0)7 (07 07 07 170)7 (07 0707 07 1) > .
First of all, we apply Algorithm 3 for any C € C(A).

As an example, we consider C'= {2,6} and the system of diophantine equa-
tions in congruence

_ — — = a1 —* =0
(’I’L2 n5|n6 ’I’L3)Oé =0= { ai _2a2 = 0 mod3

Using the algorithms that appear in [5, Section 1], one can compute the set
T ={(3,3)}. This means C is (6,0,0,3,3)—symmetrical and then the binomial

M(6,0,0,3,3)(C) - M(6,0,0,3,3)(3ym(c)) = mgwg - wgmga
is in the minimal system of generator for the ideal of S.
Continuing this algorithm with all the elements of C(A), we obtain the min-
imal S—degrees m, their m—symmetrical components (Figure 3) and their as-
sociated binomials.

10



(6,0,0,3,3) CLLLD)

. .

4,1,1,22 222,1,1

0,0,3,0,0)
4
6 4

Figure 3: m—degrees

The minimal system of generator for I is:

geni = ax3wi— wiad
gens = T1T3T5 — T2T4Tg
gens = mx3ri — riveat
geny = x3mam — T3TITH
gens = x5 — 13

The minimal system of generators for the first syzygies is

2.2 2 .2
T3Tggengs — T3T5g€ens + xr4g9eni, r19en; — Ta2xggens + x3xggen2,
T1gens — T2Xegenyg + T3T4T59€N2, T1gens — TaXegeNs + Tigens,
T1L2TeJEMN2 — T3T5gEN4 + rqgens, w%genz — T3Ts5g€ens + T4geNny

The o F—cavities associated to their degrees are in Figure 4.
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