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Abstract

The short resolution of a lattice ideal is a free resolution over a poly-
nomial ring whose number of variables is the number of extremal rays
in the associated cone. A combinatorial description of this resolution is
given. In the homogeneous case, the regularity can be computed from this
resolution.

Introduction

Let I be a lattice ideal in k[X1, . . . , Xn] = k[X], where k is a (commutative)
field. The minimal free resolution of I as k[X]-module has been studied by
many authors. Recently combinatorial descriptions of this resolution have been
given (see for example [2], [5] and references therein). In this paper we consider
the minimal free resolution of I, not over k[X] but over a polynomial ring over
k whose number of variables is the number of extremal rays in the associated
cone. This resolution is called the short resolution to distinguish it from the
usual minimal free resolution, the long resolution.

Let Λ be a generating set of the semigroup which parametrizes the associated
algebraic variety. As in [6] we consider a partition of Λ = E ∪ A, where E
consists of a chosen generator from each extremal ray. From E we can define
the “ Apery set” associated with the lattice ideal (see Definition 1.1). The
terminology “Apery” comes from the case of numerical semigroups [1].

In section 1, Lemma 1.2 provides a way for computing the Apery set using
Gröbner Bases. The first step of the short resolution can be constructed from the
Apery set. The second step is described in Proposition 1.4. Now, the complete
short resolution can be obtained by the usual methods (for example Schreyer
Theorem and its improvements [11]).

In section 2 a combinatorial description of the short resolution is given by
means of simplicial complexes. This description is similar to the one which has
been used in [7] (see also [12]) for the long resolution.
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In section 3 the main result (Theorem 3.1) of the paper is stated: The regu-
larity of a homogeneous lattice ideal can be obtained from the short resolution.
Curiously, in the case of toric curves, the classical techniques of Gruson, Lazars-
feld and Peskine [8] to study the regularity amount to understand the short
resolution. The cohomological machinery in [8] is used by L’vovsky in [9] to
give an explicit bound for the conductor of a numerical semigroup.

1 Apery sets

Let S be a cancellative commutative semigroup, with zero element and generated
by n elements Λ = {m1, . . . ,mn}. Thus, S is a subsemigroup of a finitely
generated abelian group. Denote G(S) the smallest group containing S. The
semigroup k-algebra is k[S] =

⊕
m∈S kχ

m, (χm ·χm′ = χm+m′). The ideal of S
relative to Λ is ker(ϕ0), where ϕ0 is the k-algebra morphism

ϕ0 : k[X] −→ k[S]

defined by ϕ0(Xi) = χmi . Notice that ϕ0 is surjective, and hence k[S] '
k[X]/ ker(ϕ0).

Let I be the ideal relative to a fix Λ. Equivalently ([13]), I is a lattice ideal.
Assume that S ∩ (−S) = (0). Consider k[S] with the natural S-grading

and k[X] as an S-graded ring, assigning degree mi to Xi. Notice that I is
S-graded because ϕ0 is an S-graded morphism of degree zero. The condition
S ∩ (−S) = (0) says that k[S]m, the homogeneous elements of degree m ∈ S in
k[S], is a k-vector space of finite dimension (see [3]).

Assume that rank(G(S)) = d, let V = G(S)
⊗

Z Q, and let C(S) be the
cone generated by the image, S̄ of S in V . The cone C(S) is strongly convex
because S ∩ (−S) = (0). Thus, if f is the number of extremal rays of C(S),
then f ≥ d. This implies that there exists a set E ⊂ Λ with ]E = f, such that
C(E) = C(S), where C(E) is the cone in V (S) generated by E. Fix such a set
E and A =: Λ \ E, ]A = n− f = r.

Definition 1.1. The Apery set Q of S relative to E is defined as

Q = {q ∈ S | q − e 6∈ S, ∀e ∈ E}.

Denote k[E] the subalgebra of k[S],

k[E] =
⊕
m∈SE

kχm,

where SE is the subsemigroup of S generated by E. Let k[XE ] the polynomial
ring in the f indeterminates associated with E. k[XE ] can be projected over
k[E], it is enough to associate to the indeterminate Xi the symbol χmi , for any
mi ∈ E.

k[S] is a k[E]-module, and therefore also a k[XE ]-module. The set

{χq | q ∈ Q},
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is a minimal system of generators of k[S] as k[E]-module, and therefore, also as
k[XE ]-module. Since k[XE ] is noetherian, Q is a finite set.

Assume, for the sake of simplicity, that

E = {m1, . . . ,mf} and A = {mf+1, . . . ,mn}.

Fix a total order on the monomials of k[X] = k[XE ,XA], X1 < X2 < · · · <
Xn, such that:

1. Xα < Xβ , implies Xα+γ < Xβ+γ , for any α, β and γ;

2. If f =
∑
aαXα ∈ k[X] has the leading monomial Xβ 6∈ k[XA], then

Xα 6∈ k[XA], for any α with aα 6= 0.

For example, we can consider the lex− inf order which is defined

α >lex−inf β ⇐⇒ α <lex β,

where lex order is the lexicografic order for X1 > · · · > Xn.
Any order with these properties is not a well-ordering. However, since there

exists only a finite number of monomials of S-degree m ∈ S, a Gröbner basis
of I can be computed from any S-graded generating set of I. Assume that Γ is
the reduced Gröbner basis of I for such a order. Let B be the set of monomials
Xα
A which are not divisible by any leading monomial of Γ.

Lemma 1.2.

Q = {m ∈ S | m =
n∑

i=f+1

αimi, where Xα
A ∈ B},

and in particular, B is finite.

Proof. We will use Hironaka division remainder of a monomial by a binomial, a
monomial. Moreover, if a monomial Xα of S-degree m =

∑n
i=1 αimi, is divided

by the reduced Gröbner basis, Γ, the remainder Xβ is also of degree m, i.e.
m =

∑n
i=1 βimi. Thus, if α 6= β, we obtain a new writing of m in function of

the generators of S.
Let Xα

A = X
αf+1
f+1 · · ·Xαn

n ∈ B, and let m =
∑n
i=f+1 αimi. If m doesn’t

admit another way of writing in function of the generators, then m ∈ Q and
we are done. Otherwise, m =

∑n
i=1 βimi for some βi ∈ N, and Xα

A −Xβ ∈ I.
The remainder of Xα

A −Xβ by Γ is zero. Thus, Xβ is divisible by some leading
monomial of Γ. Therefore, Xα

A is divisible by some non leading monomial of
Γ, which will only have variables corresponding to A. Property 2 of the order
guarantees that Xβ ∈ k[XA]. Thus, m ∈ Q.

Reciprocally, let m ∈ Q. It is possible to write m =
∑n
i=f+1 αimi, for some

αi ∈ N. Suppose that Xα
A is divisible by some leading monomial of Γ. Thus,

the remainder of Xα
A by Γ is Xβ , which is not divisible by any leading monomial

of Γ and it is of degree m. Since m ∈ Q, Xβ = Xβ
A ∈ B and we are done.

B is finite because Q is finite and any element in S only admits a finite
number of writings in function of the generators.
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Let l0 be the cardinality of B = {Xα1
A , . . . ,X

αl0
A }, and define the k[XE ]-

module morphism
Ψ0 : k[XE ]l0 −→ k[S],

Ψ0(ei) = Xαi

A + I, where we are using the isomorphism k[S] ' k[X]/I. Equiv-
alentely, Ψ0(ei) = χqi , where qi ∈ Q is the S-degree of the binomial Xαi

A . (It
is possible that the cardinality of B is greater than that of Q, and therefore
qi = qj , for some i 6= j.)

Ψ0 is surjective because {χq | q ∈ Q} is a generating set of k[S] as k[XE ]-
module.

Any element in Γ whose leading monomial Xv
EXu

A has variables in {Xi | 1 ≤
i ≤ f} (i.e. v 6= 0), is , except sign ±,

Xv
EXu

A −Xv′

EXu′

A .

Property 2 of the order says that v′ 6= 0, and therefore, since Γ is a reduced
Gröbner basis, Xu

A and Xu′

A ∈ B. Moreover, u 6= u′ because otherwise, since I
is a saturated ideal, Xv

E−Xv′

E ∈ I, which is a contradiction with Γ is a Gröbner
basis.

Suppose that Xu
A = Xαi

A , and Xu′

A = Xαj

A . We associate with the chosen
element in Γ, the element in k[XE ]l0 with all the coordinates equal to zero,
except the ith and jth ones, which are Xu

A, and −Xu′

A , respectively.
In this way, if l1 is the number of element in Γ of the above form, we obtain

Gi ∈ k[XE ]l0 , 1 ≤ i ≤ l1. Let N be the matrix

N = (G1| . . . |Gl1).

N defines a morphism of free k[XE ]-modules

Ψ1 : k[XE ]l1 −→ k[XE ]l0 .

Proposition 1.3.
coker(N ) 'k[XE ] k[S].

Proof. Since coker(N ) ' k[XE ]l0/imΨ1 and k[S] ' k[XE ]l0/kerΨ0, it is enough
to prove that

imΨ1 = kerΨ0.

It is clear that imΨ1 ⊂ kerΨ0. Let (F1(XE), . . . , Fl0(XE)) ∈ kerΨ0 be a ho-
mogeneous element of degree m ∈ S. This means that if Fi 6= 0, then Fi is
homogeneous of degree m − qi, where qi is the S-degree of Xαi

A . The element
F =

∑l0
i=1 FiX

αi

A ∈ I, and therefore the remainder of the Hironaka division of
F by Γ is 0.

Notice that if Fi 6= 0 then Fi 6∈ k; otherwise, Xαi

A would appear in the
remainder. Thus, F = 0 and we are done, or the leading monomial of F is
±Xω

EXαi

A for some i, and ω 6= 0. In the latter case, there exists

±(Xυ
EXαi

A −Xυ′

EXαj

A ) ∈ Γ,
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where ω = υ + β, and υ 6= 0. Assume, for simplicity’s sake, that both elements
are positive.

Consider
F (1) := F −Xβ

E(Xυ
EXαi

A −Xυ′

EXαj

A ).

Notice that the leading monomial of F (1) is less than the leading monomial of
F . We can write

F (1) =
l0∑
l=1

F
(1)
l Xαl

A ∈ I,

where the following equations are satisfied:

F
(1)
i = Fi −Xω

E ,

F
(1)
j = Fj + Xβ+υ′

E ,

F
(1)
l = Fl, for all l 6= i, j.

Equivalently, if we suppose i < j and denote

G(1) := (0, . . . , 0,Xυ
E , 0, . . . , 0,−Xυ′

E , 0, . . . , 0) ∈ {G1, . . . , Gl1},

we obtain
(F (1)

1 , . . . , F
(1)
l0

) = (F1, . . . , Fl0)−Xβ
EG

(1).

If F (1) = 0, then F
(1)
l = 0 for any l, and we are done.

If F (1) 6= 0, we can proceed by recurrence. Suppose that for, fix r ≥ 2 and
for any j, 1 ≤ j ≤ r − 1, there exists

F (j) = F
(j)
1 (XE)Xα1

A + · · ·+ F
(j)
l0

(XE)Xαl0
A ∈ I − {0},

satisfying

(F (j)
1 , . . . , F

(j)
l0

) = (F (j−1)
1 , . . . , F

(j−1)
l0

)−Xβ(j)

E G(j),

where G(j) ∈ {G1, . . . , Gl1}, and β(j) ∈ Nn (β(1) = β).
Reasoning as before, we obtain G(r) ∈ {G1, . . . , Gl1} and Xβ(r)

E such that if

(F (r)
1 , . . . , F

(r)
l0

) = (F (r−1)
1 , . . . , F

(r−1)
l0

)−Xβ(r)

E G(r),

then

F (r) =
l0∑
l=1

F
(r)
l Xαl

A ∈ I,

and the leading monomial of F (r) is less than the leading monomial of F (r−1).
Therefore, if F (r) = 0, we obtain

(F (r−1)
1 , . . . , F

(r−1)
l0

) = Xβ(r)

E G(r).
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From

(F (r−1)
1 , . . . , F

(r−1)
l0

) = (F1, . . . , Fl0)−
r−2∑
i=1

Xβ(i)

E G(i),

we obtain

(F1, . . . , Fl0) =
r−1∑
i=1

Xβ(i)

E G(i),

and we are done.
If F (r) 6= 0 the result follows by recurrence, because the elements F (j) are

homogeneous of degree m, and in each step the leading monomial decreases.

Therefore, we obtain the first step of a free resolution of k[S] as k[XE ]-
module that is S-graded:

k[XE ]l1 Ψ1→ k[XE ]l0 Ψ0→ k[S]→ 0.

In the above proof, for any element Xαi

A ∈ B we have considered its S-degree
qi ∈ Q. Assume, for simplicity’s sake, that Q = {q1, . . . , qβ0}, where β0 = ]Q.
Notice that β0 ≤ l0. In the case β0 < l0, if β0 + 1 ≤ i ≤ l0, qi = qj for a unique
j, 1 ≤ j ≤ β0. Denote j = j(i). We consider

π : k[XE ]l0 → k[XE ]β0 ,

the k[XE ]-module morphism defined by

π(ei) =
{
ei if 1 ≤ i ≤ β0

ej(i) if β0 + 1 ≤ i ≤ l0

Notice that π ◦Ψ1 : k[XE ]l1 → k[XE ]β0 , is given by the matrix

M := (π(G1)| . . . |π(Gl1)).

On the other hand, considering the morphism of k[XE ]-modules

Φ0 : k[XE ]β0 −→ k[S],

defined by Φ0(ei) = χqi , 1 ≤ i ≤ β0. It is clear that Φ0 ◦ π = Ψ0.

Proposition 1.4.
coker(M) 'k[XE ] k[S].

Proof. The situation is the following

k[XE ]l1 Ψ1−→ k[XE ]l0 Ψ0−→ k[S]
π◦Ψ1↘ π↓ Φ0↗

k[XE ]β0
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As in Proposition 1.3, it is enough to prove that

im(π ◦Ψ1) = ker(Φ0).

im(π ◦ Ψ1) ⊂ ker(Φ0) follows from Φ0(π(Gi)) = Ψ0(Gi) = 0, for any i,
1 ≤ i ≤ l1.

For the other inclusion, let (F1(XE), . . . , Fβ0(XE)) ∈ kerΦ0. Thus,

(F1(XE), . . . , Fβ0(XE), 0, . . . , 0) ∈ kerΨ0 = imΨ1.

There exist λi(XE) such that (F1, . . . , Fβ0 , 0, . . . , 0) =
∑l1
i=1 λiGi. Notice that,

if we denote Gij the jth coordinate of Gi, then

l1∑
i=1

λiGij = 0,

for any j, β0 + 1 ≤ j ≤ l0. Therefore, if we denote π(Gi)t the t-th coordinate of
π(Gi), notice that

π(Gi)t = Git +
∑

j(s)=t, β0+1≤s≤l0

Gis, 1 ≤ t ≤ β0.

Thus, for a fix t,
l1∑
i=1

λiπ(Gi)t =
l1∑
i=1

λiGit.

Therefore,

(F1, . . . , Fβ0) =
l1∑
i=1

λiπ(Gi),

and we are done.

From the free resolution

k[XE ]l1 π◦Ψ1→ k[XE ]β0 Φ0→ k[S]→ 0,

using the Schreyer Theorem and its improvements (see [11]), the S-graded min-
imal free resolution of k[S] as k[XE ]-module can be obtained. We will call this
resolution, the short resolution of k[S] to distinguish it from the minimal free
resolution of k[S] as k[X]-module.

2 Combinatorial description of the short resolu-
tion

Assume that S 6= (0), and consider the S-graded minimal free resolution of k[S]
as k[XE ]-module

0→ k[XE ]βf−1
Φf−1→ · · · → k[XE ]β2 Φ2→ k[XE ]β1 Φ1→ k[XE ]β0 Φ0→ k[S]→ 0.
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The S-graded Nakayama’s lemma (see [3]) says this resolution is unique
except isomorphisms. Moreover, denoting Mi = ker(Φi) the ith module of
syzygies of k[S] as k[XE ]-module, 0 ≤ i ≤ f − 1, we obtain

βi+1 =
∑
m∈S

dimWi(m),

where Wi(m) := (Mi/mEMi)m is considered as a k-vector space, and mE is the
ideal of k[XE ] generated by the indeterminates of XE (Xi such that mi ∈ E).

We will show how this resolution can be described by means of some simpli-
cial complexes. Concretely, if m ∈ S, let Tm be the simplicial complex

Tm = {F ⊂ E | m− nF ∈ S}.

Denote H̃i(Tm) the ith reduced homology space of the simplicial complex Tm,
and let h̃i(Tm) = dim(H̃i(Tm)).

Proposition 2.1.
H̃i(Tm) 'Wi(m),

for any m ∈ S and for any i, 0 ≤ i ≤ f − 2.

Proof. Let us consider k[S] and k ' k[XE ]/mE as k[XE ]-modules and use the
commutativity of the functor Tor, concretely

Tori+1(k[S], k) ' Tori+1(k, k[S]).

In order to compute the space Tori+1(k[S], k) as k[XE ]-module, take the Koszul
complex for the regular sequence {Xi | mi ∈ E}, which is an exact sequence.

0→
f∧
k[XE ]f

df−1→ · · · →
j+1∧

k[XE ]f
dj→

j∧
k[XE ]f

dj−1→ · · · → k[XE ]f d0→ k[XE ]→ k → 0.

Here dj is given by

dj(ei0 ∧ · · · ∧ eij ) =
j∑
l=0

(−1)lXl ei0 ∧ · · · ∧ eil−1 ∧ eil+1 ∧ · · · ∧ eij .

These homomorphism are S-graded of degree 0 assigning the degree mi0 + · · ·+
mij to the element ei0 ∧· · ·∧eij . Tensoring this exact sequence with the k[XE ]-
module k[S], we obtain the S-graded Koszul complex

0→
f∧
k[S]f → · · · →

j+1∧
k[S]f

dj→
j∧
k[S]f

dj−1→ · · · → k[S]f d0→ k[S]→ k → 0.

The restriction to its degree m ∈ S is the following complex of finite-dimensional
k-vector space

· · · →
⊕
F⊂E
]F=3

k[S]m−nF
→
⊕
F⊂E
]F=2

k[S]m−nF
→
⊕
F⊂E
]F=1

k[S]m−nF
→k[S]m → 0.
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Notice that this complex can be identified with the augmented oriented chain
complex of Tm, because

k[S]m−nF
=
{
k, if F ∈ Tm
0, otherwise

Thus, we obtain that

(Tori+1(k[S], k))m ' H̃i(Tm).

In order to compute Tori+1(k, k[S]) as k[XE ]-modules, take the S-graded min-
imal free resolution of k[S] as k[XE ]-module. Tensoring with k ' k[XE ]/mE it
is obtained

0→ (k[XE ]/mE)βf−1 Φ̃f−1→ · · · → (k[XE ]/mE)β2 Φ̃2→ (k[XE ]/mE)β1 Φ̃1→ (k[XE ]/mE)β0 → 0.

Thus, (Tori+1(k, k[S]))m 'Wi(m).
Now it is clear that the isomorphism follows from the commutativity of the

functor Tor.

As an application of these isomorphisms, if denote

D(i) := {m ∈ S | H̃i(Tm) 6= 0},

we obtain that
βi+1 =

∑
i∈D(i)

h̃i(Tm), −1 ≤ i ≤ f − 2.

Notice that, by the noetherian property, D(i) is finite. Moreover, we can state
the following corollary.

Corollary 2.2. In the above setting, the sets D(i) can be computed from the
short resolution.

Remark 2.3. The results in section 1 allow the computation of the sets D(i)
using Gröbner Bases. This method is more useful for explicit computations than
that in [4] using Hilbert bases of some diophantine systems (see [10]).

3 The regularity of a homogeneous lattice ideal

Assume that I is a homogeneous ideal for the natural grading. In this case, it
is well defined ||m|| = ||α||1, where m =

∑n
i=1 αimi and ||α||1 =

∑n
i=1 αi.

Theorem 3.1. The regularity of a homogeneous lattice ideal I can be computed
from the short resolution.

Proof. It is enough to use 2.2 and the following formula ([4])

reg(I) = max−1≤i≤f−2{ui − i},
where ui = max{||m|| | m ∈ D(i)}.
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Example 3.2. Consider the semigroup S ⊂ N3 generated by

[5, 0, 0], [0, 5, 0], [0, 0, 5], [[4, 1, 0], [1, 4, 0], [2, 3, 0], [0, 1, 4], [0, 4, 1], [0, 2, 3].

A projective simplicial toric surface.
The Gröbner basis of I respect lex-inf is

Γ = { −x3x8 + x2
9, x9x8 − x2x7, x

3
8 − x2

2x9,−x2x3 + x7x8,
−x9x3 + x2

7,−x2x4 + x2
6, x

2
5 − x6x2,−x1x5 + x6x4,

x4x5 − x1x2,−x2
1x6 + x3

4,−x2x7x9 + x3x
2
8, x2x

2
4 − x6x1x5}.

Thus,

B = { 1, x4, x
2
4, x5, x6, x5x6, x7, x4x7, x

2
4x7,

x5x7, x6x7, x5x6x7, x8, x4x8, x
2
4x8,

x5x8, x6x8, x5x6x8, x
2
8, x4x

2
8, x

2
4x

2
8, x5x

2
8,

x6x
2
8, x5x6x

2
8, x9, x4x9, x

2
4x9, x5x9, x6x9, x5x6x9,

x7x9, x4x7x9, x
2
4x7x9, x5x7x9, x6x7x9, x5x6x7x9},

and

Q = { [0, 0, 0], [4, 1, 0], [8, 2, 0], [1, 4, 0], [2, 3, 0], [3, 7, 0], [0, 1, 4], [4, 2, 4], [8, 3, 4],
[1, 5, 4], [2, 4, 4], [3, 8, 4], [0, 4, 1], [4, 5, 1], [8, 6, 1], [1, 8, 1], [2, 7, 1], [3, 11, 1],
[0, 8, 2], [4, 9, 2], [8, 10, 2], [1, 12, 2], [2, 11, 2], [3, 15, 2], [0, 2, 3], [4, 3, 3], [8, 4, 3],
[1, 6, 3], [2, 5, 3], [3, 9, 3], [0, 3, 7], [4, 4, 7], [8, 5, 7], [1, 7, 7], [2, 6, 7], [3, 10, 7]},

and therefore u−1 = 4. Notice that ]B = ]Q = 36.
From the two underlined binomial in Γ we obtain D(0) = {(8, 7, 0), (0, 8, 7)},

and therefore u0 = 3.
The short resolution is

0→ k[XE ]2 Φ1→ k[XE ]36 Φ0→ k[S]→ 0.

The regularity of I is

reg(I) = max{u0 − 0 = 3, u−1 + 1 = 5} = 5.

Acknowledgement Thanks to Bernd Sturmfels for his suggestions about the
results in this paper during my visit to Berkeley in the summer of 2000.
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[7] A. CAMPILLO, C. MARIJUÁN, Higher relations for a numerical semi-
group. Sém. Théor. Nombres Bordeaux, 3 (1991), 249-260.

[8] L. GRUSON, R. LAZARSFELD, C. PESKINE, On a theorem of Castel-
nuovo and equations defining space curves. Invent. Math., 72, (1983),
491-506.

[9] S. L’VOVSKY, On inflection points, monomial curves, and hypersurfaces
containing projective curves. Math. Ann., 306, (1996), 719-735.
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