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Abstract

We characterize the hull resolution of a monomial curve in the three dimensional affine space and
compare it with its minimal free resolution. Concretely, we give a necessary and sufficient condition
for which the hull resolution is minimal in terms of the semigroup associated with.

Introduction

Let k[x] := k[z1,... ,2,] be the polynomial ring in n variables over a field k. Throughout this paper x*
will denote the monomial z]* --- 2% with u = (u1,... ,u,) € Z§.

The hull resolution of the Z™/L-graded lattice ideal
Ip=(x"—x"|u—ve L withu,v €Zg),

where £ C Z™ is a Z-module such that £ N Z§ = {0}, was introduced by D. Bayer and B. Sturmfels
in [2]. In that work, the authors construct a new canonical free resolution of I from an unbounded
convex polyhedron P; (originally introduced by I. Barany, R. Howe and H. Scarf in [1]) and a regular cell
complex X (cf. [4] pp. 253-255).

The hull resolution of a lattice ideal is far from being minimal, but, unlike minimal resolutions, it
respects symmetry and preserves the action on I by the lattice £. Furthermore, the involved free modules
are of finite rank over k[x] and there are finitely many of them. This makes interesting the comparison
of minimal and hull resolutions of lattice ideals in order to decide when they agree.

In this paper, we center our attention in a particular class of lattice ideals. We only consider the
ideals defining monomial curves in the 3-dimensional affine space. From a new and explicit description
of the minimal resolution in terms of combinatorial arguments (Theorem 2.3), we obtain a complete
characterization of the hull resolution of a monomial curve in A®(k) :

Main Theorem. Let I C k[x] be an ideal defining a monomial curve in the 3-dimensional affine space.
The hull resolution of I is

0 — k[x]—k[x]* —k[x]—k[x]/I — 0,

if (x —x?j,;vz’“ —(z;x;)") is a minimal system of generator of I, for some threesome {1, j,k} = {1,2,3}.
Otherwise the hull resolution of I is

0 — k[x]* —k[x]* —k[x]—k[x]/T — 0.
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As a corollary we give a necessary and sufficient condition for which the hull resolution of a monomial
curve in A3 (k) is minimal in terms of the semigroup associated with.

Finally, we would like to emphasize that the study of the connections between semigroups and lattice
ideals is an active research field as it can be seen through the abundant literature about it (for more
details see [5]).

1 The hull resolution of a lattice ideal

Let £ C Z™ be a lattice, that is a finitely generated subgroup of Z", such that £LNZ§ = {0}.
We write M, for the lattice module generated by {xV | v € L}, in other words, the monomial

k[x]-submodule of the Laurent polynomial ring, k[x*] := k[x][z; ", ...,z ']

Mg = k[x[{x¥ | v € L} = k{x" | ue Zy+ L} C k[xT].

The hypothesis LNZ§ = {0} assures that the elements in M with exponent in £ form a minimal system
of generators of M, in the sense of [2]. Moreover, the lattice £ acts on the lattice module M,; the
L-action is given by x¥ + b = x¥*P with b € £ and x¥ € M.

For v = (v1,... ,v,) € Z™ and t € Ry we abbreviate t¥ = (t**,... ,t"») € R} . Fix any real number
t larger that (n +1)! = 2-3---(n 4+ 1). We define P, to be the convex hull of the point set {tV | x¥ €
M[,} - Ri .
Remark 1.1. The set P, is an unbounded n-dimensional convex polyhedron.

From Lemma 2.1 in [2] it follows that P; = R} + conv{t¥ | v € £} C R}, and, by Proposition 2.2
in [2], one has that the vertices of P; are precisely the points tV with v € L.

Lemma 1.2. (Theorem 2.3 in [2]) The face poset of the polyhedron P; is independent of t fort > (n+1)L.
The same holds for the subposet of all bounded faces of P;.

Definition 1.3. The hull complex of M, denoted Hull(My), is the regular cell complex, equipped with
a choice of an incidence function &, of bounded faces of P; for large t.

For simplicity, in the following we will write X for the hull complex Hull(M;).

The hull complex X inherits a Z™-grading from the generators of M as follows. Let F' be a nonempty
face of X. We identify F' with its set of vertices {tV,... ,tV"}, a finite subset of {t¥ | v € L}. Set
mp :=lem(x¥?,... ,xV"). The exponent vector of the monomial mp is the join vp := V{vy,...,v,.}in
Z™. We call vy the degree of the face F.

On the other hand, the L-action on M, and a suitable choice of the incidence function & (cf. proof
of Theorem 3.9 in [2]) assure that the hull complex X is equivariant, that is, F € X and b € £, implies
F+be X (X is L-invariant) and the incidence function ¢ satisfies e(F, F') = ¢(F + b, F' + b), for every
b e L.

Definition 1.4. The chain complex Fx is the Z™-graded k[x]-module

mg

Fx = @ k[x] - er, with differential O ep := Z e(F,F")
FeX, F#0 F'eX, F'#0

EF.
mipg

Theorem 1.5. (Theorem 2.5 in [2]) The chain complex Fx is a free resolution of M., called the hull
resolution of M.

Now we are at the disposal to define the hull resolution of a lattice ideal I-. Following the results in
[2] section 3, one has that the hull resolution of I is the image by a certain functor of the hull resolution
of M. In this section we will define the hull resolution of I as in [2] but avoiding any reference to the
functorial equivalence.

The group L acts on the faces of X. Let X/L denote the set of orbits. For each orbit F € X/L we
select a distinguished representative Rep(F) € F such that t° is adjoined to F, and we write Rep(X/L)
for the set of representatives, by Lemma 3.13 in [2] one has that this set is finite.



Definition 1.6. The chain complex ¥% is the Z™/L-graded k[x]-modulo

Fj;( = @ k[X] “VF

FeRep(X/L), F#0

with differential 8*vp := Rep(0 vr), where O is the differential of Fx and

Rep : @ kx]-ve — @ k[x]-vp

FeX, F#£0) FeRep(X/L), F#£0
is the k[x]|-modulo map given by Rep(VF) = VRep(r)-

Theorem 1.7. ([2]) The chain complex F% is a free resolution of I, called the hull resolution of I.

2 The minimal resolution of a monomial curve in A?(k).

Let S be a semigroup of positive integers generated by {ni,n2,ns}, with n; € Zy, i = 1,2,3, and
ged(ni,n2,ng) =1, and let G(S) C Z be the group generated by S.

We consider u; = (1,0,0), uz = (0,1,0) and uz = (0,0,1) in Z3, and the Z-linear surjective map
7 : 23 — G(S), where w(u;) = n;, i = 1,2,3. We write £ for the kernel of 7,

3
L:=ker = {v=(vi,v9,v3) € Z® | vai =0}

i=1

Obviously £ C Z3 is a lattice such that £NZ3 = {0}. Thus, we have that the ideal of the affine monomial
curve {(A™,A"2,A"3) | X € k} is the lattice ideal I (cf. [6]).

Remark 2.1. Since the lattice £ is defined from the semigroup S, in the following we will write Ig for
I..

We define a1 € Z4 to be the least positive integer such that a;n1 € Zgne + Zgons and a2 and ag
analogously. That choice of a1, a2 and as implies the existence of v;; and v, € Zg (not uniquely defined)
such that a;n; = v;;n; + Yiens, for each threesome {i,7,k} = {1,2,3}.

Theorem 2.2. ([6, 3]) With the notation introduced above:

(a) Is is complete intersection (equivalently S is symmetric) if and only if there existi,j € {1,2,3}, i #
J such that a;n; = ajn;. In this case, the only minimal binomial systems of generators (except unity
in k[x]) is

s

— % QG — Ok _ o Vki
F = x; z;’, By =xy z"zi,

T

for some threesome {i, j,k} = {1,2,3}. Moreover, if apny # a;n;, then such a threesome is unique.

(b) Is is not complete intersection (equivalently S is not symmetric) if and only if Yyri,yx; are both
not zero for every threesome {i,j,k} = {1,2,3}. In this case, one has that the pairs {Yr:,y;} are
unique. Moreover, the only minimal binomial system of generators (except unity in k[x]) is

Y21 ,,,723 Y31

— 01 Y12 .13 — Q2 — Q3 Y32
Fy =2 —x2,%23"%, Fy =23 —x{'23*%, Fy =23° —x ,

Ty
where 0 < yp; < a;, 1 =1,2,3 and k # 1.

The explicit description of the minimal generating sets of Is in above theorem can be found in [6],
and the uniqueness can be deduced from the combinatorial description of these sets (cf. [3]) by means of
some simplicial complexes associated with the elements in the semigroup. Concretely, if m € S the set

Api={F C{1,2,3} | m—> n; €5}
ieF
is a simplicial (abgtract) complex. The ith-reduced homology of this complex with values in k is denoted
by H;(An), and h;i(A,,) is its dimension as a k-vector space.



Let k[S] ~ k[x]/Is be the k-algebra associated with the semigroup, and
D : k[x] — k[S],
the presentation map.
Theorem 2.3. With the same notation as above

(a) If Is is complete intersection (equivalently S is symmetric) the minimal free resolution of Ig is:
0 — k[x] =2 k[x]?> 25 k[x] 22 k[S] — 0.

Moreover, ®; and ®5 can be represented respectively by the matrices

A= (R B) and A= ( T )

where the Fy and Fy denote the binomials defined in Theorem 2.2(a).

(b) If Is is not complete intersection (equivalently S is not symmetric) the minimal free resolution of
IS 18!
0 — k[x]% 22 k[x)® 25 k[x] 2% k[S] — 0.
Moreover, ®; and ®5 can be represented respectively by the matrices

Y32 Y23

To™" X3
A1 = (F1 F2 F3) and A2 = .Z'gls .Z';ﬂn
x’iy’zl xgw

where the Fy, F> and F3 denote the binomials defined in Theorem 2.2(b).

Proof. First statement follows from the particular form of the binomials F; and F;.

In order to prove the second one, it suffices to see that the first syzygy module of Ig, Ny := ker @4, is
generated by the column vectors of As. For this, we will use that the S-degree, m, of a minimal generating
syzygy of Is satisfies hi(Ap,) # 0 (cf. [3]). In this case A, is an empty triangle, equivalently

m — (n1 + ne2) € S;
m — (n; +n3) € S;
m — (ny + ng) € S;
m— (ny +ns +n3) € S.

Moreover, ha (A,,) =1 and hence, in any minimal generating set of Ny there is a unique element of degree
m (S-graded Nakayama’s Lemma).
Let G = (g1, 92,93) € N1 be a minimal generator of degree m € S, where g; has S-degree m—a;n;, i =
1,2, 3, and suppose that g; and go are different from zero.
Since g1 has S-degree m — aini, m— (ny +n2+n3) € S and agng = y1ana + Y1303 with v12, 113 # 0
we obtain
m = aini + Ans
or
m = aini + uns.

The integers A and y are positive because A,, is connected (equivalently ho(A,,) = 0, see [3]). On the

other hand, if m = ai1ni + An2 and A > as, then, from the equality agng = vy31m1 + v32m2 with v31 < g

and 32 < g, one has m — (ny + na + n3) = (a1 — )ny + (A — 1)ny — ng € S, in contradiction with

m—(n1+n2+n3) € S. Therefore, we have that 0 < A < as. Analogously, one can prove that 0 < p < as.
By the same arguments as above, using now that g, has S-degree m — asns we obtain

m = asnas + N'ny
or
m = asns + p'ng,



with 0 < M < a7 and 0 < p' < as.

The minimality of a;, ¢ = 1,2,3 implies that the only possibility (except permutation of {3, j,k} =
{1,2,3}) is m = aqmy + Ay = agne + p'ng with 0 < A < a2 and 0 < g’ < as. So, the binomial
F =z{z) — 25224 liesin Ig, and the uniqueness of the integers ;s assures that A = 732 and u = ms.
Furthermore, the only elements m € S such that hy(A,,) # 0 are

m1 = a1ny + Y32N2 = QaNg + Y1313
Mo = a1N1 + Y23N3 = Q3N3 + Y12N2

(it is enough to check that the six possible cases are reduced to these ones).

Finally, notice that the column vectors of A, lie in Ny; indeed, ®; o ®3 = 0 because ay = vjr + ik
for any threesome {i,7,k} = {1,2,3} (see Proposition 3.2 in [6]), and they are of degree m; and ms,
respectively. We conclude that N; is generated by the column vectors of As. O

Remark 2.4. There exist commutative algebra results (cf. [8]) which assure that a free resolution of Is
is 0 — k[x]? — k[x]®> — k[x] — Kk[S] — 0. These arguments are used in [9] in order to get a similar
explicit description of the minimal free resolution of I's when S is not symmetric.

Corollary 2.5. ([7]) k[S] is Gorenstein if and only if Is is complete intersection (equivalently S is
symmetric).

Proof. Tt is enough to use that the Cohen-Macaulay type of k[S] is the rank of the last free k[x]-module
in the minimal resolution. O

3 The hull resolution of a monomial curve in A3(k).
Our aim in this section consist of characterize the hull resolution of Ig in terms of the semigroup S.

First of all we will study the structure of the hull complex X = hull(M). Since £ = Z? we will start
with a characterization of all Z2-invariant triangulations of R? whose set of vertices is Z2.

Given a finite set of vertices {vo,v1,...,v,}, we write {vo,V1,...,V,) for
T T
{Z)\iviER" | Z/\i:]-With )\z>0}
i=0 i=0

Definition 3.1. Given a basis B = {e;,es} of Z? we define the simplicial complex associated with
B, Kpg, to be an infinite simplicial complex such that

(i) the set of vertices of Kp is 7.2
(i1) if A € K, then A +b € Kg, for every b € Z2, that is, Kg is Z>*-invariant;
(#17) (0,e1,e2) and (0,ez,e2 — e1) are 2-simplices of Kp.
Remark 3.2. In the light of definition above:
1. the simplicial complex Kp is unique;
2. the 2-simplices of K are (0,e;,e;) +b and (0, e3,e; — e;) + b, for each b € Z2
3. the geometric realization of Kp is R?, that is, |Kg| = R?, for every basis B of Z>2.
Proposition 3.3. If K is a infinite simplicial complex such that
(i) its set of vertices is 7.2
(ii) the geometric realization of K is R?;

(iii) if A € K, then A +b € K, for every b € 72,



then there exists a basis B = {e1,es} of Z? such that K = Kp.

Proof. By (i) we have that 0 € Z? is a vertex of K, and by (ii) that there is a 2-simplex A € K with
A = (0,e1, ez, for some e;,es € Z2. It suffices to see that {e;,es} is a basis of Z?2 to prove the result.
It is clear that {e;,es} is a basis of R?, otherwise, dim A < 2. On the other hand, if {e;,es} is not a
basis of Z2, then there exists b € Z2 \ {0, e;1,e2} such that b = aje; + azes with 0 < a; <1, i =1,2.
Therefore, there is a face F < A with dim F' > 0 and (b) N F' # ), in contradiction with (iii). From all
this, taking B = {e1, e2}, it follows, by (iii), that K is the simplicial complex associated with B. O

The results above assure that every infinite Z2-invariant triangulation K of R? whose set of vertices
is Z2 agrees with Kp for some basis B of Z2. Furthermore:

Corollary 3.4. The only infinite L-invariant triangulations of £ ®z R whose set of vertices is L are
determined by a basis of L. That is, any triangulation K of LQzR of this kind has got as facets (0,e1,e2)+
b and (0,e2,e3 —e1) + b, for every b € £ and some basis B = {e1,e2} of L.

Proof. Taking into account that there exist homeomorphisms from R? to £ ®z R which send Z2 in L,
and therefore that transform ZZinvariance in L-invariance, we are done. O

This last corollary is one of the key facts for a solution of our first problem. In our case the
lattice module My is k[x]{z]'z3*z5® | Zle vin; = 0}. So the vertices of the polyhedron P, are
v = (t1,1%2,t%) € RS with Y0 vin; = 0 for ¢ large enough.

Theorem 3.5. There exists a basis B = {e1,e2} of L such that the 2-cells of X consists of, one and
only one, the following configurations:

(1) squares (t°,t°,t°2 t®27°1) + b such that (t°,t°2) + b is not a 1-cell of X, for each b € L;
(2) triangles (t°,t°,t°2) + b and (t°,t2 t®2=°1) + b, for each b € L.

Proof. First of all, since P; is an 3-dimensional unbounded convex polyhedron (1.2) and X is the cell
complex of its bounded faces, we have that the facets of X are 2-dimensional at most. Moreover, we
know that the vertices of X are on Y := {(z,y,2) € R3 | z™y™2" = 1}. So, we have that the facets
of X are exactly of dimension two.

From all this it follows, since X is regular, that the geometric realization |X| of X is homeomorphic to
Y1 (for a better understanding, consider, for instance, the homeomorphism which send each point z € | X|
to the intersection of Y; with the line that contains z and 0 € R?®). Therefore, every triangulation of | X|
is also a triangulation of Y;.

Let us see now that there exists a L-invariant triangulation of |X| = Y; whose set of vertices is
{tV | v € L}. Let Rep(F}),...,Rep(F;) be the distinguished representatives of the orbits of X/L such
that F; is a 2-cell of X, ¢ =1,...,r. For every i = 1,...,r, we consider the triangulation of |F;| that is
obtained after adding (if necessary) the 1-simplices (t°,tV) for each t¥ € |F;|, decomposing by this way
|F;| in 2-simplices. Since X is L-invariant, any other facet of X is F; + b for some j € {1,...,r} and
b € L. Thus, making a translation by £ of these triangulations of |F;|,i = 1,...,r, to the remaining
2-cells, we obtain a infinite £-invariant simplicial complex K whose set of vertices is {tV | v € £} with
|K|=|X| =Y, as desired.

On the other hand, the map f : £L ®g Z —> Y such that f(vi,ve,v3) = (¢"*,t"2,1%3) is a homeo-
morphism of topological subspaces of R® with the Euclidean topology which is also an isomorphism of
R-vector spaces which respects the action by £. From where it is deduced that every L-invariant tri-
angulation of Y7 whose set of vertices is {t¥ | v € L} defines uniquely a L-invariant triangulation of
L ®z R whose set of vertices is £, and vice versa. Therefore, by Corollary 3.4, we have that there exists
a basis B = {ej, ey} of £ such that the 2-simplices of K are f((0,e;,e2) +b) = (t°,t° t2) + b and
f({0,e3,e5—e;)+b) = (t°,t®2, te2~e1) + b, for each b € £. From all this it immediately follows that repre-
sentatives of the 2-cells of X /L are (t°,t®,t®2) and (t°,t®2 t®27°1) or (t0,t®1 te2 te2—e1) O (t0 te2). O

Once we have limited the suitable forms of the hull complex X, we can restrict the hull resolution of
Is to the two following cases.



Corollary 3.6. The hull resolution of Is admits exclusively two possibilities:
0 — k[x] L k[x]2 L k[x] 2 k[S] — 0

0 — k[x]2 22 kx]® 25 k[x] 2% k[S] — 0.

Proof. By the results in section 1 and Theorem 3.5, we know that the number of 2-cell different modulo
L and adjoint to t° are 1 or 2 and they are squares or triangles if it happens (1) or (2) in Theorem 3.5,
respectively. O

In the view of result above, we have only to determine when it happens one or another resolution.
This fact will only depend on the semigroup S. The non symmetric case can be reduced to well-known
results.

Lemma 3.7. If S is not symmetm’c, then the hull resolution of Is is minimal. So the hull resolution is
0 — k[x]2 2 kx]* L5 k[x] 2% k[S] — 0.

Proof. It is a well known fact (cf. [6]) that S is not symmetric if and only if the lattice ideal Ig is
not complete intersection. In this case, by Theorem 2.2(b), I is also generic in the sense of [2], that
is, there exists a system of generators of I of binomials with full support. Therefore the hull and
minimal resolutions agree (cf. Example 3.12 in [2]). So, by Theorem 2.3(b), the hull resolution of Ig is

0 — k[x]2 L2 k[x]® 25 k[x] 22 k[S] — 0. O

Assume now that Ig is complete intersection. By Theorem 2.2(a) we have that a minimal system of
generators of Is is Fiy = 2 —z;’ and Fy = * —z]* 2" for some threesome {i,j,k} = {1 2,3}. Without
loss of generality, we can suppose i =1, k=2 and j=3,80 F} =z —z3® and F5 = z3? — x> x]*.

Lemma 3.8. If Is is complete intersection, with the notation above, Y21 = 723 if and only if I =
(t0,tve,tv2 tvitv2) s q 2-cell of X, where vi = (1,0, —a3) and vo = (=721, a2, —723).

Proof. In first place, we suppose that I is a 2-cell of X. The points t°, t¥*, tV2 and tV*1V2 lie in a plane,
equivalently, the determinant of the matrix

A(t) == (tV = t0)6v2 — t0[t¥1HV2 — £0) € M5 (k(t))

has to be zero for t large enough, and this happens if and only if 51 = 3.

Conversely, if 421 = 723, then we have that det A(t) = 0 which implies that I" is a square. Thus, it
suffices to see that I' is a 2-cell of X. To do that, we will prove that every vertex in X \I" is in one of the
two half-spaces defined by the plane that contains the points t°,tV,tv2 and t¥**V2. An implicit equation
of this plane is az + by + cz = d with

a = (% —1)(t* - 1); c = ot (e — 1) (1 —1);
b = (ta1+a3 — 1) (t’Yzl — 1) ; d = (ta2+721 — 1) (ta1+a3 — 1) .

Note that a, b, c and d are strictly positive integers for ¢ large enough. Moreover, since {vy, vz} is a basis
L, any other vertex in X is t31V1+e2V2 — ($a101-02721 4a202 4—a1a3—a2721) for some a; and az € Z. From
both statements, it follows that if aja; — azy21 > a1 + 1 or asas > as + 1 or —ajaz — azy21 > 1, then
ta1vita2ve iq in the half-space ax + by + cz > d. Indeed, az = d if and only if

d (t02+’721 _ ]_) (ta1+0t3 _ ]_)

=L Tpm (o —1)(tos —1) f@).

Since a1 < log,f(t), limsoolog,f(t) = a1 and f(t) is a strictly increasing function, we have that
x = t*1%¢ with 0 < € < 1, for ¢ large enough. So, a t21+1 > d and consequently if ajaq — a2y21 > a1 +1,
then the point t21V1+92V2 ig in az + by + cz > d. The remaining inequalities are obtained by making a
similar argument in each coordinate of t®1vitazvz,

Finally, the points of integer coordinates in R? which lies in the region bounded by the half-spaces
a1 — 1y < a1, y <1and azz +721y < 0 are (0,0), (1,0), (0,1) and (1,1). They precisely correspond
to the points t®, t¥*, tV2 and t¥'*V2 that already lie in az + by + cz = d. Therefore, we have that all the
vertices of X \T" are in the half-space azx + by + ¢z > d. O



Lemma 3.9. If Is is complete intersection, with the notation above, 21 # Y23 (for every possible choice
of them) if and only if the 2-cells of X are triangles.

Proof. Tf the 2-cells of X are triangles, then (t0,t¥1 tv2 tV1+Vv2) is not a 2-cell of X, where v; =
(a1,0,—a3) and va = (=721, @2, —¥23), for any choice of 721 and 7ya23. From Lemma 3.8 it follows that

Y21 7 Y23
We now suppose that 21 7# 23 for every possible choice and that the 2-cells of X are not triangles.
By Theorem 3.5 we have that the 2-cells of X are squares. Furthermore, there exists a basis B = {e1, e2}

such that A := (t0 t®1 te2 te2—€1) is a 2-cell of X. Consequently the hull resolution of I's is 0 — k[x] ELN
k[x]2 25 kx] 2% k[S] — o.

On the other hand, since (t°,t°2) is not a 1-cell of X, then the vertices of A adjoint to t° are t®' and
t®2~°1, Necessarily, they have to be {e1,e2 — e1} C {u, v}, where Gi = x"+ —x"- and Gy = xV+ — xV-
is a minimal system of generators of Ig, otherwise, im f; # ker &, = Is and then the sequence 0 —

k[x] LN k[x]? LN k[x] 2o, k[S] — 0 could not be exact. From all this and by the uniqueness in
Theorem 2.2(b), it follows {u,v} = {£vy,£va}, for some v; = (a1,0, —a3) and vo = (=721, @2, —723).
Then:

e e; = *V;,e; —e; = v, and consequently e; = +(v; + v;), with {i,7} = {1, 2}.
e e; = Fv;,e; —e; = +v; and consequently e; = +v; F v;, with {i,j} = {1,2}.

Any of these eight possibilities implies that T := (t°,tV,tV2,t¥1+V2) is a 2-cell of X, because ' = A +b
for some b € £, in contradiction with Lemma, 3.8. O

All these results are the proof of our main theorem.

Theorem 3.10. Let S be a semigroup of positive integers generated by {ni,n2,n3}, withn; € Zy, i =
1,2, 3, and gcd(ni,n2,n3) = 1. The hull resolution of Ig is

0 — k[x] 22 k[x]> L5 kx] 2% k[S] — 0,

when S is symmetric with a;n; = a;jn; and there exist yp; = ~yr; such that apng = yrin; + Yring, for
some threesome {i,j, k} = {1,2,3}. Otherwise the hull resolution of Is is

0 — E[x]? L kx)® L5 k[x] 2% k[S] — 0.

Corollary 3.11. Let S be a semigroup of positive integers generated by {ni,ns,n3}, withn; € Z, i =
1,2,3, and gcd(ny,ne,n3) = 1. The hull resolution of Is is minimal if and only if

e S is not symmetric, or

o S is symmetric with aun; = a;jn; and there exist yr; = yr; such that apng = Yrins + Yijn;, for
some threesome {i,j,k} = {1,2,3}.

Proof. It follows from Theorem 3.10 and Theorem 2.3. O
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