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Abstract

In this paper we study the Kummer extensions of a power series field K = k((X1,..., X)), where k is an
algebraically closed field of arbitrary characteristic.

1 Terminology and notation

Let k£ be an algebraically closed field, X1, ..., X, indeterminates formally independent over &, and let K and L,, be
the fields

K=k((X1,..,X)),Lm =k ((Xll/m, ...,X}/m)) ,

where m is a non negative integer, not divisible by the characteristic of k.
The extension K C L, is trivially normal, finite and separable, its Galois group being G ~ (Cp,)
stands for the cyclic group of m elements. The elements of G will be noted

7
, where Cp,

(a1y-yar) i Lyy —> Ly, 0<a;<m
X, — w'”Xl

where w € k is an m—th primitive root of the unity.
Let R and Sy, be the rings

R=Fk[[X1,.., X+]], Sm=F [[x;/m, ...,X,}/m]] .

The elements of S;, will be called Puiseuz power series.

Our field of study will be Kummer extensions of K. In order to do that, recall ([1]) that a Kummer eztension of
exponent n of a field F' (which must containing a primitive n—th root of the unity and hence its characteristic cannot
divide n), is the splitting field of a polynomial

(Z" — 1) ... (Z" — aq), with a1,...,aq € F.

We will first explore the Kummer extensions which are subextensions of K C L,,. It is obvious that all separable
extensions of K generated by monomials lying in some S,, are Kummer extensions. On the other hand, notice that
an extension generated by monomials in S,, should contain a Puiseux power series which generates it (using the
primitive element theorem, as k£ must be infinite). In the next section, we will prove the converse, hence proving
that all subextensions of K C L, are Kummer. This will be done in two different ways. First we will show a
straightforward proof and, subsequently a more involved process, which will carry more information and which is, in
an ample sense, constructive.

It should be noted that the results in this section also admit a Galois theory approach, as shown in [6]. The
connection of these results with the theory of quasi-ordinary surface singularities, sketched below, becomes clear
after [5] and [7], where the semigroup point of view is exploited in order to obtain geometric information on these
singularities.

In the last section, we will make some general remarks about Kummer extensions not contained in any L,
proving that all such extensions are contained in a field

K ((Xf‘l/m)) (XYY,

for some ai,...,a,,m € N.

Most of the arguments given here (notably all from section 2) can be completely translated word-by—word to the
analytic context. We hope that this work will be useful as a step to understand the geometry of algebroid (analytic)
hypersurfaces which admit a Puiseux—like parametrization. In fact, distinguished exponents have proved to be a
useful tool for the surface case (characteristic 0), as shown in [8]. This results have led us to expect that some deeper
application of class field theory tools may help to the study of the geometry and the topology of these varieties.

The author wishes to thank the help, advice and patience of K.-H. Kiyek, L. Narvdez and J.L. Vicente during
the writing of this paper.

2 Distinguished exponents of a Puiseux power series
If ( € S is written as
(= Zcil---'irXfl/m"'Xf‘r/m7 Ciy..in € K,

then the set
A Q) =A{(n, i) | €iyoi, #0F C N7
will be called (a bit carelessly) the set of exponents of (.



Definition.— Given ¢ € Sp,, a finite subset

{ (ign, iﬁ”) s (igs), i&s)) } CA(C)

will be called a set of distinguished exponents of ( if
(1) (1) (s) (s)
K(Q) =K (Xil I im0 el /m) .

In order to prove that all separable extensions of K generated by a Puiseux power series are Kummer extensions,
it suffices to check that all Puiseux power series in Sy,, where m is not divisible by ch(k), possess a set of distinguished
exponents.

Proposition.— Let ¢ € S,,. For all (a1, ...,a,) € G let us write

Aarnar) (€) = min {A (¢ — (a1, -, ar)($))} 5

where < is the partial product order. Note there is only a finite number of >-minimal elements in A (¢ — (a1, ..., ar)(¢))-

Then the set
P = U A(Gq,---,ar)(C)
(a1,...,a)EG

is a set of distinguished exponents of .
Proof.— In the situation above, if

P= { (ign, ...,iﬁl)) (iﬁ“, i&”)} ,

i (1)
K[P]=K |X; ..XIr |l=1,...t|.

we will write for short

It is clear that K[P] C K|[(], as every element of G leaving ¢ fixed, does so with the monomials having exponents
in P. On the other hand, if we take

(ai,...,ar) € Gal(K[P]/K) \ Gal(K[¢]/K),

it must hold
A (¢ = (a1, 8:)(C)) € AQ) \ P,
which is a contradiction by the definition of P. This proves the result.

Note that the above result, although outputs a set of distinguished exponents, says little or nothing at all about
the relations among the exponents in A(¢) or the degree of the extension K C K[(].

In order to obtain more information we will describe in what follows a different and much more versatile process
for obtaining such a set for a given series { € Sy,. First of all we fix a total ordering in N", say <, and assume that
m is the minimal denominator for ¢ (that is, { ¢ S, for all ¢ < m).

For a given matrix A of ¢ rows and u columns, whose elements are integers, we will write

(1) gcd(A) = ged (minors of order I in A),

for all 1 =1,...,min{¢,u}.
Step 1.— Consider the r X r matrix

m 0 0
0 m .. 0

My = . .. . )
0 0 m

which obviously verifies (r) gcd(Mo) = m".
Step 2.— Define the sets Ao = A(¢) and

Ap = < (G1y.00y8r) € Ao | (r) ged(Mp) = (r) ged | Mo
iy

(These exponents are trivially those representing monomials of ¢ which lie in R).
Step 3.— Write A; = Ag \ Ap, define the first distinguished pair by

(57, i) = min (A0);



and consider the matrix o
1

My = | Mo| :
i

(z‘ﬁ”, ...,iﬁ”) (z{”, ...,i£’>) ,

the set A; and the matrix M; are defined, consider

Step 4.— Once the distinguished pairs

A=< (81, .y80) € A | (1) ged(M;) = (r) ged | My

Step 5.— Write A;1 = Ay \ A}, define the (I + 1)-th distinguished pair by
(iY“), o i£l+1)) = min (Az41);
<

and consider the matrix
i§z+1)

Mipy= | M|
0D
Remark.— The previous procedure must give a finite number of distinguished pairs, as for every [ > 0 we have

(r) ged (Mi—1) > (r) ged (M) ,

P= { (iﬁ”, i£1)> s (igw, iﬁs)) } .

Now, as above, K[P] C K|(], keeping our previous notation. So, for proving that P is a set of distinguished
monomials, it suffices proving the following result:
Proposition.— Let there be

so we must end up with a finite set

P = {X{F)/m...xﬁ'ﬁl)/m X{gt)/m...xzﬁt)/m}

(t+1) L(t41)
P2=PIU{X{1 m X /m}
two sets of monomials in S, (not in any Sy, with ¢ < m), such that

(r) ged (M1) = (r) ged (Mz) ,

where ) ®
m 0 75 e g

Mi=| o ]

0 .. m V0 .. ¥

m .. 0 B . 0 0

My=| oo L

0 .. m ].51) j’st) j£t+1)

Then K [Pl] =K [Pz]
Proof.— The point is proving K [P1] D K [P»] and, for this, it is necessary and sufficient showing that, if we call
Gy = Gal (L /K [P)]), for I =1,2; then G; = Ga.
Define the set
Hy = { (i, .,ir) € (2/Zm)’

xia/m xir/m e K [P } .
So, H; contains, up to multiples of m in all coordinates, those monomials which remain fixed by the elements of

G1. Writing up these elements in the form (a1, ..., a,) it means that

(i1, 0rir) € Hi <= Y aiy =0 (mod m), ¥ (ai, ..., a,) € G1,
=1



and also, in particular,

H, = <(.7§1):’]7(‘1)) PRLLR) (]it):’]'r(‘t))> .

Therefore H; is clearly a subgroup of G (non-canonically identified with (Z/Zm)"), but it also admits another
interpretation. In fact,
H; ~ Hom (G/G1,Z/Zm),

identifying (1, ..., ¢-) € H1 with

f(h,---,ir) : G/G1 — Z/Zm

r
(1,0, r) + G1 +— me

1=1
As G is the direct sum of 7 cyclic groups of order m, we have that G/G1 can be written up as
G/G1=C4 & ...0 C,,, where a;|m, VI=1,..,c.
This leads to . .
H, ~ Hom (G/Gh, Z/Zm) ~ @) Hom (Ca,, Z/Zm) ~ P Ca, ~ G/Gh,
=1 =1

as a;|m, for all I.
On the other hand |G/G1] (that is, [K [P1] : K]), is precisely |H1| and hence,

|G1| = |G/H].

Let us calculate |G/H1|. First of all, instead of writing the group as

(/2 {(37,3) s o (387,03 )
we will do it as Z" /f{\l, where
-E{\l = <(m7 0,..., 0), ceny (0, 0,... frn)7 (]§1), ’]7(‘1)) i (J%t% ’]ﬁt))> .

Let us write ¢ a generic element of Hom(Z", Q/Z) with Hi C ker(yp), and ¢ its factorization through Z" /I/{\l .
According to [2], prop. 8;

Z” /H, ~ Hom (z’“/ffl, Q/Z) ,
and each of these morphisms is characterized by the images of the canonical generating set of Z"/ fI\l, say
ap = <‘5 (el + ﬁ\l) )

where e; stands for the /-th element of the canonical basis of Z".
But H; C ker (¢) is equivalent to

m 0 O 5
(a1 ... ar) oo : : =(0...0).
0 .. m ;& .. ¥

Again by [2], cor. 1, we can find some linear forms L, ..., L, with coefficients on Z such that the previous relations
are equivalent to
m .. 0 0 .. 0
(L1 (a1, ...ar) ... Ly (oa,...ar)) =(0...0),
0 . 7 0 .. 0

where g1 = (1) gcd (M1) =1 and m1...qr = (1) ged (M1). Therefore, as this equality must hold in Q/Z, it is plain that
there are exactly (r)ged (M1) different morphisms in Hom (Z’ / I/-I\l, Q/ Z), hence

T r

m

1= 8 = w0 sed 00

= (r) ged (M) .

Doing exactly the same with G2 we find
|Ga| = (r) ged (M2) = (r) ged (M1) = |Gl



This finishes the proof, as G1 C Gs.
Corollary.— If { € S,,, having a set of distinguished exponents

p— {(i@, ...,iﬁ”) - (ig”, i&”)} C A0,
then

(a) A(Q)C Y, Z <i§l), ...,i&l)) , mod Zm X ... X Zm.
(b) [K(C) : K] = m"/(r) ged(M), where

:(s)

.(1
g) )

0 .. m Y . @

Let us remember that a power series ¢ € Sy, is called quasi-ordinary ([4]) if, for all (a1, ...,a,) € G, it holds

C - (ala ey aT) (C) = M(a1,.--,ar)u(a1,---,ar) (Xll/ma ceey X’r}/m) 5

where M(q,,....q,) is @ monomial in Sy, and u(q,,...,a,) iS & unit.
Corollary.— Let K C K’ be a separable field extension. The following facts are equivalent:

(a) K' C Ly,.
(b) K' can be generated by a finite set of monomials in Sy,.
(¢) K' can be generated by a quasi—ordinary power series.

Proof.— We have just proved (a) <= (b) and, as (¢) = (a) is trivial, we are finished if we prove (b) = (c).
But, for a given set of monomials in Sy,, say {Mi, ..., M}, note that

K[M, ..., M;] = K[My, My M, ..., My M,...My).

Now, if we apply the primitive element theorem to the second set of generators we can find a1, ...,a; € k such
that
K[M1, vy Mt] = K[OA1M1 4+ asM1Ms + ... + CttM1M2...Mt],

and it is plain that a1 M1 + ... + a¢ M1 M>...M; is quasi-ordinary.

Remark.— This process enables to compute (on equal footing) two well-known (sets of) arithmetic data which
are most useful in algebraic geometry, as are the Puiseux pairs of a plane curve ([9]) and the characteristic pairs of
a quasi—ordinary surface ([4]) (both of them for k = C).

Example.— Let us do the Puiseux pairs case: Assume we have a plane algebroid curve given by f(X,Y) €
C[[X,Y]] and a Puiseux branch, which can always be represented (up to a change of variables) as

h1
Y=¢(XV™) = eq XY epypie XOTE 4
=1

[e<]
g, XPal™ 4 Zcﬁg+legX(ﬂg+leg)/m’
=1

where we can assume m < 81 < ... < B¢, B ¢ Zm for all k=1, ..., g and, in addition, if we call
B = pre1, m = qieq, ged (p1,q1) =1

ei-1 = qier, fi =pier, ged (pr,q) =1; VIi=2,..,9,

then the pairs (p1,41), ..., (g, qq) are called the Puiseuz pairs of the curve. Note that these pairs are determined
(and they determine as well) by the set

{myﬂla sy ﬂg} )

called by Zariski the characteristic of the branch {. Also is direct from the formulae above that
e1 =ged(m,B1), e =ged(ei—1,8), VI=2,..,g.

If we apply our process to the set of exponents on A ({) using, for instance, the natural ordering on N, we start
up with
Mo = (m)
and then choose the smaller element on A, that is, 81, which, by the above conditions, happens to verify gcd (m, 81) <
(1) —
m, so iv) = f.



Assume we have already computed the first ! distinguished exponents, which coincide with f1,..., 3 (necessarily
in this order because of our choosing of the ordering on Z). Then we have the matrix

My=(m B1 ... B),

and ged (m, B1, ..., B1) = ey, by the above considerations. We have discarded in previous steps those monomials which
can be written as a combination of some f3; and e, for ¢ < I. In the same way, then, we discard now those elements in
A which do not make smaller the previous gcd, which are, precisely, those which can be written up as a combination
of ﬂl and er.

By definition of f;41, it has to be the minimal element not yet discarded, and this proves that our procedure
must end up computing the set {81, ..., B }.

Example.— Consider now a quasi-ordinary surface. For the definitions and main properties of so—called the
characteristic monomials of a quasi-ordinary branch ¢ we refer to [4] or [3]. For a quasi-ordinary branch

¢= Zcini/ij/m
,J
parametrizing a quasi-ordinary algebroid surface, the characteristic monomials {(i1, j1), ..., (is, js)} C N? are deter-

mined (up to a technical process called normalization) by the following facts:

(1) They are totally ordered by the partial product order <
(i1, 41) < (d2, j2) < ... < (s, Js)-

(2) They are a set of distinguished exponents.
(3) For any 1 <t < s, X¥/™Y9/™ lies in K((X/™mYyJ/m . X%/™yit/m))if and only if

t
(i,5) € Y Z (i1, 1) mod Zm x Zm.

=1

(4) Forany 1 <t <s,
xit/myge/m ¢ K((Xll/myh/m’ _._,Xh—l/myh—l/m))_

(5) If ¢i; # 0 then

(i,5) € Y Z (i1, 1) mod Zm x Zm.

=1

So, if we take { and apply our constructive process fixing a graded total ordering <, it is clear from above
that (i1, j1) must be the minimal element of A({) for <. Now, from (3) and (4) the second element chosen in the
process must be precisely (iz2,j2). The argument goes on for further exponents and then (2) assures us that, once
{(%1,41), ---, (is, Js )} have been extracted, the process is finished.

Note that the choice of a graded ordering is not necessary in order to obtain the characteristic exponents (many
non—graded orders might work as well).

3 General Kummer extensions

We will make now some remarks about Kummer extensions of K of any kind. In order to do that observe that we
can reduce the problem to that of the splitting field of a polynomial F(Z) = Z" — ¢, where { € R.

Remark.— First of all, mind that, if ¢ is an irreducible power series not associated with any of the X;, we
cannot hope the splitting field of F' to be a subextension of some L,,. In fact, ¢ defines a valuation v¢ of K that is
unramified over L,,, as v¢ (X;) = 0, for all 4, but it is obviously ramified over the splitting field. However, we can
prove a resembling result.

Proposition.— In the above situation, there are i, ..., ar € N such that the splitting field of F' is a subextension

of
w () - (X))

Proof.— We will do the proof by induction on r, being the case » = 1 direct from the Newton—Puiseux theorem.
So assume that, for all 7 € R, there exists a set of positive integers {a1, ..., @, } such that

K/ =K ((X77)) o ((x2077) 5

and fix a power series { € R[[X,41]], with v(¢) = Ao > 0, where v is the usual order with respect to X,+1. We want
to find a root of Z™ — { € K'[Z], where K' = k ((X1, ..., Xr+1)).



Let us call from now on (; the approximate n—th root of ¢ (up to order i in X,11), which will be constructed in
what follows. The term with minimal degree on X,1 of a {/(, must be of the form c,\o/nX:‘i{", where it must hold

n —
Cxo/n = AXo)

So there must be a set of monomials {Xf‘l/", - Xf"/"} C S, such that

K [ya] = K o] © & ((x277)) o ((x2777))
Hence we can write {x, = ¢y, /nX;\_?_{", which verifies
G €K ((X;"l/")) (X)) [[ng{"“ , v (CR, —¢) = A1 > o

Now, in the same way3 the following term with minimal degree on X,y1 of any {/(, must be of the form
cAl_[Ao(n_l)/n]X?il_[)‘O(n_l /"], where it must hold now

(n=1)/n _
NCX1~o(n—1)/n]Crg/n" = GX1s

with ay, the initial form (with respect to X,11) of ¢, — ¢ and hence

Cx1—[Ao(n—1)/n] € K’ ((Xf‘l/")) ((X;)t,«/n)) ]

We write (), = c/\o/nX;\_?_{" + c,\l,[Ao(n,l)/n]X;\j_;[’\o(nfl)/"] and, as above, it holds

e & () ) () [[00]] ) v @ -0 =2 >

Note that, though ¢y, is a Puiseux power series, all the exponents in X, 11 of (Y, are positive integers: in fact,
they are {Ao, A1,2A1 — Ao, ..., nA1 — (n — 1)Ao}. In particular, this shows A2 € N.
Assume now we have constructed (y,, verifying

e ((a))- () )

o v(¢R, =€) =Xet1 > As > .. > Ao, with all X; € N.
e The series (), has the form

8

L (M) )=BiXo+A0/n
QSZZ%(M ----- A;)=Biho+A0/nXr i1 o )

j=0
where L; is a linear form with possitive coefficients and j3; a positive integer, for j =1, ..., s; being Lo = ag = 0.
If we call ay,,, the initial form of ¢}, — ¢ then it is clear that we have to define

Aot1—[Ao(n—1
Orugr =6 + 01 Dotn-1)/n X i1 Pote=b)/nl

where it must hold
(n—=1)/n _
M 1-Do(n=1)/nlCxg/n" = Bsyr>

Cxs+1—[Ao(n—1)/n] eK' ((Xf‘l/n>) ((X;xr/n)) .

Moreover, it is plain that v (C}Z‘H_l - C) = As+2 > As41. Finally, note that all the exponents in X, appearing
in the developement of (X are of the type

and therefore

. Xl | . A
sz [Lj A1y A5) = Bjdo + ;0] + dst1 ()\s+1 —Xo + ;0) ;

j=0

with 49 + ... + s+1 = n. This implies that all these exponents are positive integers of the form L (A1, ..., As+1) — Yo,

with L a linear form with possitive coeffients, v € N.
In this way it is shown that

veer ((xe) - (o) [ese]).

This finishes the proof of the proposition.
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