PREPUBLICACIONES DEL DEPARTAMENTO DE ALGEBRA

DE LA UNIVERSIDAD DE SEVILLA

Explicit models for perverse sheaves
Félix Gudiel-Rodriguez
Luis Narvaez—Macarro
Prepublicacién n2 16 (31-Octubre-2002)

Departamento de Algebra. Universidad de Sevilla



Explicit models for perverse sheaves

F. Gudiel Rodriguez*and L. Narviez Macarro'
Departamento de Algebra, Universidad de Sevilla

Abstract

We consider categories of generalized perverse sheaves, with relaxed constructibility condi-
tions, by means of the process of gluing ¢-structures and we exhibit explicit abelian categories
defined in terms of standard sheaves categories which are equivalent to the former ones. In par-
ticular, we are able to realize perverse sheaves categories as non full abelian subcategories of the
usual bounded complexes of sheaves categories. Our methods use induction on perversities. In
this paper, we restrict ourselves to the two-strata case, but our results extend to the general case.
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Introduction

Perverse sheaves first appear in context of Complex Analytic Geometry by the coming together of
the Riemann-Hilbert correspondence of Mebkhout-Kashiwara and the Intersection Cohomology of
Goresky-MacPherson at the beginning of the 1980s. In the work [1] the notion of ¢-structure over
a triangulated category was extracted and it was proved that the category of analytic constructible
perverse sheaves, that we call “classical perverse sheaves”, can be obtained by a general process
of “gluing” t-structures, that makes sense in a much more general framework. In fact, the main
contribution of loc. cit. is the use of that process to define f-adic perverse sheaves over algebraic
varieties in positive characteristics and to prove the theorem of purity of intersection complexes.

In this paper, we develop some ideas and complete some results in [13] and [5] on the core of
the t-structure obtained by gluing standard t-structures shifted by “perversities” of strata, as in the
classical case but without imposing necessarily any constructibility conditions. Objects in this core
can be thought of as “generalized perverse sheaves”.

In the complex analytic case, and when we consider the middle perversity, the category of classical
perverse sheaves is a full abelian subcategory of that of generalized perverse sheaves. Furthermore,
a classical perverse sheaf is the same as a generalized perverse sheaf which is complex analytic con-
structible.

The advantage of our point of view consists of being able to work simultaneously with different
perversities and to establish some precise relations between perverse sheaves with respect to different
perversities, which we do not know how to do if we are restricted to the classical case.

Our main result is theorem 3.5, from which we deduce (see 4.1) that any (generalized) perverse
sheaf, and then any classical perverse sheaf, has a canonical model (16). As a consequence, the
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category of (generalized) perverse sheaves is equivalent to a non full (resp. full) abelian subcategory
of the category of the usual bounded complexes (resp. up to homotopy).

The main idea consists of constructing a functor @ relating d-perverse and (d—1)-perverse sheaves,
and by iteration, d-perverse sheaves with O-perverse sheaves, which are nothing but usual sheaves.
In this way we develop the idea pointed out in [13], rem. (2.3.7), where we were restricted to the
“conical” case.

Construction of functor ® and many other results in this paper are inspired by the formalism
of vanishing cycles [3] and the gluing of classical perverse sheaves of Deligne-Verdier [2, 14] and
MacPherson-Vilonen [9], but our framework is more general.

In order to simplify, in this paper we restrict ourselves to the two-strata case, but our results
extend to the general case.

Let us now comment on the content of this paper.

In section 1 we recall first the gluing process of ¢-structures and the notion of (generalized) perverse
sheaf is introduced. Second, we recall some elementary constructions with adjoint functors that play
a fundamental role in the proof of theorem 3.5 and in the manipulation of our explicit models for
perverse sheaves.

Section 2 deals with the construction of functor ® and the “induction on perversities” 2.6.

In section 3 we show the main result in this paper, namely that the category of (generalized)
perverse sheaves Perv is equivalent to an explicit abelian category described in terms of abelian
categories of usual sheaves.

In section 4 we give some applications of theorem 3.5. First, we associate to any perverse sheaf a
canonical model. More precisely, we lift the inclusion functor of Perv into the derived category to a
faithful exact functor into the category of usual bounded complexes.

Second, we lift the inclusion functor of Perv into the derived category to a fully faithful functor
into the category of bounded complexes up to homotopy, K°. In particular, Perv can be realized as a
full abelian subcategory of K°.

Third, we give quiver descriptions of conical perverse sheaves with respect to a K(m, 1) basis.

Finally, we compute in terms of our listed canonical models the different perverse direct images
and the intersection complex associated to a sheaf on the open stratum, and we announce further
results.

Part of the work of the first author was carried out during a visit to CMAF da Universidade de
Lisboa, whose hospitality is gratefully acknowledged.

1 Preliminaries and notations

1.1 Perverse sheaves

Let X be a topological space stratified by ¥ = {C,U}, where i : C — X is a closed immersion and
j:U=X—-C — X is its complementary dense open immersion. Let Ox be a sheaf of rings on
X and let Oy = j*0x,0c = 1*Ox. For x = X, U, C, let us denote by B, the abelian category of
sheaves of O,-modules, and let 2, C B, be full abelian subcategories stable for kernels, cokernels and
extensions. Let us denote by D, := Dg* (%B.) the full triangulated subcategory of the derived category
D(®8B.) whose objects are bounded below complexes with cohomology in 2. Let us suppose that the
usual functors i, = 41,*, Ri', Rj,, j1,7* = j' induce functors

P k)
b=ty i*=j

Do 'Dx Dy

i* Ri! Rjx,Jy




in such a way that we are in the conditions of gluing ¢-structures on Dy and on D¢ [1].

(1.1.1) EXAMPLE.

(1) If A, = B,, then D, = DT(B,).

(2) Let S be a compact topological space, X the cone of S, C its vertex, Ox the constant sheaf with
fiber a ring (resp. a noetherian ring) k and 2, the abelian categories of 3-constructible sheaves of
k-modules not necessarily finitely generated (resp. finitely generated).

(3) The space X is a pseudomanifold stratified by X, Ox is the constant sheaf with a field k as fiber,
and the 2, are the abelian categories of X-constructible sheaves of k-vector spaces of arbitrary (resp.
of finite) rank. For instance, X can be a complex analytic space and C' C X a smooth closed analytic
set, satisfying the Whitney conditions.

Definition. 1.1 For any integer d > 0, the category of d-perverse sheaves on X with respect to the
stratification X, Pervd(X, Y)), is the core of the t-structure on Dx obtained by gluing the natural t-
structure on Dy and the image by [—d] of the natural t-structure on Do [1]. We will say that the
perversity of the stratum C (resp. U) is d (resp. 0).

Remark. 1.2 Observe that, if d = 0, then the category Perv®(X,X) coincides with the category Ax.

Proposition. 1.3 (Characterization of d-perverse sheaves) An object K of Dx is a d-perverse sheaf
(with respect to ) if and only if the following properties hold:

(a) K is concentrated in degrees [0, d],
(b) j*K is concentrated in degree 0,
(¢c) "Ri'K =0 forn < d.

Proof: By definition of Perv?(X,¥), an object K of Dx is a d-perverse sheaf if and only if
h"(j*K) = 0 for n # 0, h"*K = 0 for n > d and h"Ri'K = 0 for n < d, and it is clear that a K
satisfying properties (a), (b), (c) is d-perverse.

Let us now take a d-perverse sheaf K. Properties (b) and (c) are clear. The long exact sequence
associated with the triangle

K = K = i i K 5
gives rise to isomorphisms h!(K) ~ h'(i,i* K) for any [ > 1 and then h!(K) = 0 for any | > d.
In a similar way, the long exact sequence associated with the triangle

iWRi'K — K - Rj, " K 5

and the fact that Rj, j* K is concentrated in non-negative degrees gives rise to isomorphisms A'(i,Ri' K) ~
hY(K) for I < 0 and then h'(K) = 0 for any | < 0, and K is concentrated in degrees [0,d].  Q.E.D.

1.2 Functors acting on morphisms of functors

Let B,C be categories, F,G : B — C functors and 7 : ' — G a morphism of functors (or natural
transformation) which associates to any object B in B a morphism 75 : FFB — GB in C with the
usual naturality properties.

For any functors £ : A — B,H : C — D we denote by 7TE : FE — GE, HT : HF — HG the
morphisms given by
(TEYo =Tra, (HT)p= H(Tp)
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for any objects A in A and B in B.
(1.2.1) We have the following rules:
(a) H(tE)= (HT)E, Hlp = 1y, 1pE = 1pg.
(b) (Toe)E = (17E)o (eF), H(toe) = (HT) o (He) for any other morphism ¢ : F' — F.

(c¢) (6G) o (K1) = (L7) o (oF) for any other functors K,L : C — D and any other morphism
oc:K — L.

(d) (r+7)E = (tE)+ (7'E), H(r+7')=(H7)+ (H7') in the case of additive functors between
additive categories.

1.3 Adjoint functors

(1.3.1) In this section, we consider a couple of adjoint additive functors G : A - A, F: A" — A
between abelian categories with adjunction morphisms a : Id4 — F'G and § : GF — Id 4 such that
F is left exact, G is exact and « is injective. We denote F := FG and (Q,q) := coker . We have
then a commutative diagram with exact rows and columns:

0 0 0
0 y Idy — F —25 Q s 0
[ alF aQ
Fo Fq
0 > T >» FF —— FQ (1)
q qlf qQ
0 , Q@ -2, or %5 QO
0 0 0

(1.3.2) Let us call v : Q — FF the unique morphism satisfying v o ¢ = oF — Fa. From (1) we
deduce the relations

(Fg) oy =0aQ, (qF) oy =—Qo.

(1.3.3) From the adjunction properties, the exact sequence
0G5 GF % 6Q—0
splits, with retraction SG : GFG — G. Then the sequence
Fo Fq
0—->F —=FF —-FQ —0 (2)
is exact and splits, with retraction v := F3G. Let us call p : FQ — FF the corresponding section, i.e.
po (Fg) =1 — (Fa) ov, (Fq) o p = 1pg.

We have



(1.3.4) With the above notations, the relation v o (aF) = 1y holds and the sequence

0-F 5 FF & QF -0

also splits with the same retraction as in (2). Let us call ¢/ : QF — FF the corresponding section, i.e.
wo(qF) =1p — (aF) ov, (¢F) op' = 1gp.

We have v = p o (aQ).
Functors FQ and QIF are canonically isomorphic by means of h := (¢F) o  : FQ — QF and its
inverse h~! = (Fg) o 1.

Lemma. 1.4 For any objects A, B in A, the sequence
0 — Hom(QA,FB) 2 Hom(FA, FB) 2 Hom(A, FB) — 0

1s exact and splits.

Proof: From (1.3.4), application
f € Hom(A,FB) — vg o (Ff) € Hom(FA,FB)

is a section of the above sequence. Q.E.D.

2 Construction of categories and functors

2.1 The functor (2

(2.1.1) Let 2 be a category. Let us denote by Arr(2l) the category of arrows of A, by s,¢ : Arr(2A) — A
the functors defined by
s(A= B):=A, t(A=> B):=B

and by ( : s — t the morphism defined by ( (atyp) = U

If A is abelian, the category Arr(2) is also abelian and functors s,t¢ are exact and induce ex-
act functors 5,7 : C(Arr(%A)) — (2[) They induce triangulated functors K(Arr(A)) — K(2),
D(Arr(2)) — D(%A), also denoted by 3,#. Let us denote by { : 3 — ¢ the morphism of functors
induced by (.

(2.1.2) The functor N : C(Arr(2A)) — Arr(C(2)) defined by N =5 %, ¥ is an isomorphism of abelian
categories. In a similar way we define functors N : K(Arr(2A)) — Arr(K(2)), N : D(Arr(A)) —
Arr(D(2()), which are no longer equivalence of categories. Nevertheless, a morphism in K(Arr(2)) is
a quasi-isomorphism if and only if its images by § and ¢ are quasi-isomorphisms.

For any abelian category 2 and any object (U LN V) € C(Arr(2)) = Arr(C(2A)) we define

QU L V)= (VS cone(8)) € C(Arr(2)),

where ¢ is the canonical inclusion. One can easily define the action of {2 on morphisms and we
obtain an exact functor 2 : C(Arr(2A)) — C(Arr(2)) which commutes (up to isomorphism) with the
translation functor and satisfies 5 = t.



Proposition. 2.1 The functor 2 above induces a triangulated functor Qx : K(Arr(2A)) — K(Arr(2))
such that 5Qx = t.

Proof: 1t is an exercise we leave to the reader. Q.E.D.

The definition of distinguished triangles in K(2() gives rise to a morphism ¢ : {Qx — 3[1] in such
a way that the following triangle of functors

557 = 50 <25 70 2 31 (3)

is distinguished, i.e. its evaluation on any object of K(Arr(2()) is a distinguished triangle of K(2).
The following proposition is basically the same as the axiom (TR2) of triangulated categories for
K(2) ([15], chap. I, prop. 3.3.3).

Proposition. 2.2 Under the above hypothesis, there is an isomorphism of functors x : 3[1] =N (1953
such that the following diagram is commutative:

Ok —2 31] —% 7
TR
502 U 302 M a0,

Proposition. 2.3 The functor Qk : K(Arr(A)) — K(Arr(A)) transforms quasi-isomorphisms into
quasi-isomorphisms and then it induces a triangulated functor Qp : D(Arr(A)) — D(Arr(2A)) such
that 5Qp = t. Moreover, there is a morphism ¥ : 1Qp — 3[1] and an isomorphism x : 3[1] = Q2
such that the following triangle of functors

55T =350 22 10 S 51 (4)
1s distinguished and the following diagram is commutative:

0p —2 5] =

LKA
702
502 T, g0z P2, o).

Proof: The first part follows from the relation 5Qx = ¢, from the fact that a morphism £ in
K(Arr(2)) is a quasi-isomorphism if and only if 5(¢),#(£) are quasi-isomorphisms and from triangle
(3).
The second part is basically the axiom (TR2) for the triangulated category D(2() and follows from
triangle (3) and from proposition 2.2. Q.E.D.

Remark. 2.4 The functor Qg defined in [12, 13] is related to the functor Qp above by the equality
Qo = NQp.

(2.1.3) Let us denote by £ the full subcategory of Arr(D(2()) whose objects are the A = B such that
A is concentrated in degree 0 and B is concentrated in degrees > 0. For such objects the morphism v
(in D(2()) is determined by its cohomology of degree 0. More precisely we have the following result:
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Proposition. 2.5 Functor N defines an equivalence of (additive) categories between N 19 and Q.

Proof: We sketch the definition of a quasi-inverse of N : N1 — Q and leave the details to the
reader.

Given an object Y = (A = B) in £, let U,V be the complexes defined by U° = h°A, U™ = 0 for
n # 0 and

40 1
V =75B = — 0 — cokerd' =2 B' 22 ...,

where coker dl_;1 is placed in degree 0, and let U : U — V the morphism of complexes determined by
0% =h% : U — h°B c VO.

Correspondence Y + (U < V) extends to a functor N : Q — N7'Q. It is easy to see that
NN ~Idg.

On the other hand, for any object X = (U LA V) in N7, the following commutative diagram in
C()

v 5 v

nat.l Jrnat.

T>08
Ton E— Tzov

tT T:

WU L 0V
defines a natural isomorphism B B
K(X): X — N(N(X)). (5)
Q.E.D.
(2.1.4) Let us call C = (QpN)[—1] : Q — D(2).
An object (U LN V) € D(Arr(2)) is in P := Q5" N~1Q if and only if the complex U is concentrated

in degrees > 0, V is concentrated in degree 0 and h°S is injective.
From propositions 2.3 and 2.5 we obtain an isomorphism

n = ({QpkQp)[—1] o x[-1]: 5 — CNQp (6)
between functors from P to D(A).

(2.1.5) For any object Y = (A = B) € £ such that A" =0 for all n # 0 and B" = 0 for all n < 0
we can identify (by a canonical isomorphism)

—dp —dp

_ o =% po ~%, p1 %,
C(Y)—"'—>O—>A /B /B 7 "

where A° is placed in degree 0.

Consequently, for any object X = (U LN V) € P such that U and V are concentrated in degree 0
(h°B must be injective), we can identify

(CNQp)(X) =+ —= 0 = h°V =24 coker h°8 — 0 — - - -
placed in degrees 0,1 and isomorphism 7y : U — (CNSp)(X) reduces to

, (7)

Wy M Ry

:OJ l_nat. (8)

U =0 —2 coker h°3,

where minus sign in —h%3 comes from the definition of y in proposition 2.3.
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2.2 The functor ®

In this section we come back to the situation described in section 1.1.

(2.2.1) Let us choose an additive left exact functor F = F'G : A = By — A = By and an injective
morphism « : 1 — F as in (1.3.1), such that F(2y) C Ay, Fg, is exact, (R'j,)(FA) = 0 and
J«FA ~ R(j.F)A, for i > 0, A € Ay. The restriction to Ay of the functor Q = coker o defined in
(1.3.1) is also exact.

To simplify, let us write 2 : D(Arr(Bx)) — D(Arr(Bx)) instead of 2p in proposition 2.3.

(2.2.2) Let us first consider the additive left exact functor ¢y : Bx — Arr(Bx) defined by

Yr = (Id 5 5.F"),  p:= (j.ag") o adj, 9)
where adj : Id — j,75* is the adjunction morphism, and second, functors
\IIF = QRwF : DX — D(Arr(fBX)), (I)]F = E\I/F : DX — Dx.

Once the functor F is fixed, we omit subscripts and we will write v, ¥, ® instead of 9, Uy, Pp.
We have canonical isomorphisms

3Ry ~1d, 3V ~ IRy ~ R(j,Fj*) = R(4,F)j* (10)
and triangle (4) gives rise to the triangle

Id % R(G.F)j* “5 & — 1d[1]. (11)

(2.2.3) EXAMPLE.

(1) In example (1.1.1), (1) let us take U%S as the discrete topological space with underlying set
U, A : U¥ — U the identity map, Opas = A*Oy, A’ the abelian category of Opas-modules and
F =A,, G = A* (see [4], chap. II, §4.3).

(2) In example (1.1.1), (2), let us suppose that S is a K(m, 1) space, p : U — U the universal covering
space of U, Oy = p*Oyp, A’ the abelian category of O-modules and F' = p,, G = p* (see [13]). If the
fundamental group 71 (U, z,) is finite and k is noetherian, then we can also consider the categories 2,
as those of constructible sheaves of finitely generated modules.

(3) In example (1.1.1), (3), it is not possible in general to choose a functor F as above, but we will be
able to apply the methods of this paper as explained in section 4.1.

2.3 Induction on perversities

The following theorem generalizes [13], prop. 2.3.3 and rem. 2.3.7.

Theorem. 2.6 Let d be an integer > 1 and let K be an object in Dx. Then, K € Pervd(X, Y) if and
only if j*K € Ay and ®K € Perv® (X, X).

Proof: Let us consider the long exact sequence of cohomology associated with the triangle (11)
evaluated on K: )
K " R, F)j*K -5 oK — K[1]. (12)
If K is d-perverse, j*K belongs to 2y, R(j.F)j*K = j,Fj*K is concentrated in degree 0 and
hY(®K) ~ b (K) for i # 0,—1. In particular ®K is concentrated in degrees [—1,d — 1].



For i = —1 we have an exact sequence
0—h H(®K) = h°K = R°(4,F)j*K = j,F5*(h°K) — 0,

where the second arrow is nothing but pmox (see (9)), which is injective because « is injective and
RT¢(h’K) = RT¢K = i,h°Ri'K = 0. Then h™!(®K) = 0 and ®K is concentrated in degrees
[0,d—1].

By applying j* to (12) we obtain j*®K ~ Qj* K, and then j*®K is concentrated in degree 0.

On the other hand, by applying Ri' to (12) we deduce that Ri'®K ~ (Ri' K)[1], hence h™Ri'® =
K =0 for any m <d— 1.

By proposition 1.3, we conclude that ®K is (d — 1)-perverse.

Conversely, let us suppose that j*K € 2y and that ®K is (d — 1)-perverse. By triangle (12) again
we deduce that K is concentrated in degrees [0,d], h"Ri' K ~ ™ 'Ri'®K = 0 for any m < d and
then K is d-perverse. Q.E.D.

Remark. 2.7 As pointed out in [13], rem. (2.8.7), theorem 2.6 suggests iterating the functor ® in
order to obtain, for any d-perverse sheaf K, an usual sheaf ®*K. The main result of this paper (see
theorem 8.5) tells us how to reconstruct K from its restriction to the open set U and from ®?K.

3 The equivalence of categories

3.1 Gluing data
We keep the notations in (1.3.1) and (2.2.1).

(3.1.1) For each integer 7 > 0let us write ¢’ := ¢Qf, o' := o, ¢" := (Fg') o (aFQ') = [(Fg)o(aF)|Q" =
[(aQ) 0 g]Q = a0 g = g°C.

For d > 1, we have the complex

T,=F % ... %7 pott 77 (13)
placed in degrees [0, d|, which is a resolution of length d of the identity functor by means of the
injection Id = T.

(3.1.2) Let hy: T,Q — Q7441 be the morphism of complexes given by

Ry = (=1)"'hQ  FQ — QFQY, 0<i<d-1
and h¢ = (—1)¢QaQ? : Q! — QFQ?, where h has been defined in (1.3.4). It is a quasi-isomorphism
whose composition with aQ : Q — 7;Q is equal to Qo : Q — Q7441

Definition. 3.1 For each integer d > 1, let B¢ be the additive category whose objects are the
(L, F,u,0), where L € Ay, F € Ax, u: j,FQ L — F and 0 : QL = j*F such that uo j.g4 % =0
(if d > 2) and o 0 ¢ = j*u, and whose morphisms from (L, F,u,o) to (L', F',u',0") are defined as
the pairs (f,g) where f: L — L' g : F — F' are morphisms such that u' o (j,FQ* 1 f) = gou.

Observe that in the above definition, the relation (j*g) o 0 = ¢’ o (Q? f) holds.
For d > 2, let us define the additive functor

G4—1 := coker j,.:gd_2 Ay — Ay,
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which is right exact.

In the above definition, we can replace condition u o j, gfé‘Q = 0 by taking objects (£, F,u, o) with
u: Gd_lﬁ — F.
The proof of the following proposition is an exercise left up to the reader.

Proposition. 3.2 The category BE is abelian.

Remark. 3.3 By using the fact that sheaves on X are determined by their restrictions to U and C
and by the gluing morphism i* — i*j,5*, category BE fits into the construction of abelian categories
in [9], 1. Namely, category BL is equivalent to the category C(F,G;T) in loc. cit., where F =
i*Gq_1,G = 1*j,Q : By — B¢ (F is right ezact and G is left exact) and T = i*j,q%1 : F — G,
where j,q% ' : Gg_1 — 5,.Q? is the morphism induced by j,q% L.

As in [9], any other choice of the functor F in (2.2.1) gives rise to a category equivalent to BE.

(3.1.3) By theorem 2.6, functors j* and ® can be considered as functors j* : Perv*(X, %) — Ay, @
Perv?(X, %) — Perv® (X, X).

From the properties of F in (2.2.1), we have

(F)(RAy) C ﬂ Perv™ (X, X).

m>0

For any K € Perv?(X,Y), we have R(j,F);j* K = j,Fj*K and the morphism ! in (11) gives rise
to a morphism
u': g = @

between functors j,Fj*, ® : Perv(X,¥) — Perv?* (X, ¥).
As pointed out in the proof of theorem 2.6, by applying the functor j* to (11) we deduce an
isomorphism
€' Qj* = 5@ such that ¢ o (gj*) = 5 u'. (14)
(3.1.4) We define inductively

u' = (u1®) o (7,FQ2¢Y) : LFQ T — B, i > 2
fi — (é-lq)i—l) o (Qgi—l) . Qz]* :> j*(I)i, 7 Z 1.

The relations
Eo(@Q ") =4, uo(jg ) =0, (£'®)o(Q ) =¢ (15)

hold for every ¢ > 2.

3.2 The theorem
With the notations introduced in (3.1.4), we do the following:
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Definition. 3.4 For each integer d > 1, let us define the additive functors
Dy := (5%, ®% u? £%) : Perv?(X, %) — BY
and By : BE — Perv(X, %) by

. . d—2
9z Jx9%
N

-0
By(L, F,u,0) := j,FL 22 j FQL s . FQY L L T, (16)

where the complez is placed in degrees [0,d], the action of By on morphisms being obvious.

In the above definition we can identify
j*Bd(E)j::u:o-) = Tdc (17)

by means of o (see (13)). Furthermore, the acyclicity properties in (2.2.1) show that j,FQ'L =
Rj,FQ'L. Then Ri'By(L, F,u,0) = Ri' F[—d], and we deduce the perversity of By(L,F,u,o) from
proposition 1.3.

The main result of this paper is the following:

Theorem. 3.5 For any integer d > 1, functors By and Dy defined above are the quasi-inverse of each
other and they define, thus, an equivalence of categories between Pervd(X ,Y) and BE.

As suggested by rem. (2.3.7) of [13] and theorem 2.6, the proof of theorem 3.5 can be approached
by induction on perversity d.

Remark. 3.6 In case d = 1 our proof of the isomorphism 1d ~ DB s essentially the same as in
[18], th. 2.3.4, but it should be noticed that in loc. cit. there is a mistake in the proof of the faithfulness
of D1. Our proof of theorem 3.5 completes the one given in [5].

3.3 The proof

First Part: We are going to construct a natural isomorphism O ~ DyByO for any O in BY.

For d = 0 let us call B% = Ax and By = Id : B — Perv’(X, ¥).

For any d > 2 we consider functors ¥ : B% — B%! whose action on objects (resp. on morphisms)
is given by (L, F,u,0) := (QL, F,u,0) (resp. (f,9) := (Qf,g)). For d =1, functor T : B} — B
is simply defined by (L, F,u,0) = F.

For any d > 1 we also consider functors s : B¢ — Ay, ¢ : BE — Ay and morphism v : j,FQ1s —
t defined by s(L,F,u,0) = L, t(L, F,u,0) = F, Vi, Fus) = u. We obviously have sT = Qs and

j*t = Qfs.

From (17) we can identify j*B,; = Tys for d > 1, and from the acyclicity properties of F with
respect to j, in (2.2.1), we deduce

OB, = IORY B, = I By = cone(By £2% j,Fj* By = j,.FTys),

i.e.
(®By)"' =0 (juFs), (@By)* ' = (.FPQ"'s)&t,

(®By)" = (j.FQs) & 0,
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(®By)' = (.F°Q's) @ (LFQ's), 0<i<d-2,

and
- 0 j«offs i j*]ngS j*ami+15 .
1 _ i
d<I>Bd = < 0 —j.¢% > , dop, = ( 0 —j.gtts , 0<1<d-3,
Jdi-2 — 7. Fgi=2s j,aFQ%1s di-1 — 7. FgQ%¢ s (j*a(@ds) o adj
®Ba 0 —v ’ ®B; — 0 )

where adj : t = 7,5*t = j.Q%s is the adjunction morphism.
By the same reason, morphism u'By : j,Fj* Bg = j,FT;s — ® By becomes the natural inclusion.

Let Q4 be the complex of functors from B¢ to 2y obtained by plumbing Fs in degree —1 and
FT;s in degrees > 0 by means of Fas. From (13) and (2.2.1) we deduce that complexes Q4 and j,Qq
are exact.

(3.3.1) For any d > 1 let us call Ly = B4—1%, which can be considered as a complex of functors from
B to Ay, and let us define the following exact sequences:

A= nyl=
0= L' =020 (@B 1 =00, 01 S0,
A’L ( )7,+1 j*li@is . )
0 Li (™ >>(<I>Bd)i d(lj*uQ)j*inﬁ(), 0<i<d—2,
A=1o(—1)d (@ s)o(ad)) d ol
O_>LZ—1 ( —1 >> (@Bd)d_l 7 =1 (@ s)o(ad))) , *Q

d =0 d md=(10) . d
0— LY=0—"— (®B;)* — j.Q4 — 0,

where v : Q — F2, 1 : FQ — F? have been defined in (1.3.2) and (1.3.3) respectively.
From (1.3.2), (1.3.3), (3.1.1) and (1.3.4) we deduce, first:

(Fg') o (uQ') = [(FaQ) o (Fq) o p]Q = FaQ™,
(1Q) o g* = [po (Fg) o (aF)]Q" = [a]F — Fo)Q,
(7:7Q"'s) o (adj) o v = (,7Q" 's) 0 (j.qQ* ') = [j.(aF — Fa)Q*']s,
(FqQ?*s) o (vQ" 's) — aQ's = [(Fg) oy — a@]Qd 's =0,

and second:

dip, 0 Ny =N o (Jug™s), diy, omy=myt odyy  for any i.

In particular we obtain an exact sequence of complexes

0— Bd_li /\—d> ®B, E) ]*Qd — 0,

which shows that A\; : B;_1% — ®B; is a quasi-isomorphism and then an isomorphism between
functors from BE to Perv? (X, X).

(3.3.2) For any d > 1 we consider the morphism of functors 0, : j,Fs — By 1% given by 03 = j.¢%s
ifd>2and 6, =v:jFs - t= By¥. Diagram

J«Fs L) By 1%
j*IFasl )\dl (18)
ul
5. Fj* By = j,FTys 2% B,

12



commutes in the homotopy category of complexes and then in the derived category.

(3.3.3) For each ¢ > 1 let us call
¢ = (L FQ T Biyy) 0 (LFQT 1 j A1) : 4. FQT 5" B — 4, FQ' 5" By

From rule (1.2.1), (c), and (3.1.4) we deduce that the following diagram of functors from B5™ to
Perv’(X, X)) = Ax
u*B; %
—

7. FQ j* BT ®'B;T

¢il ‘I’i)\i+1l

T uBibt it
JFQ'j*Biyy ——— "By
commutes, where the vertical arrows are isomorphisms.

(3.3.4) With identifications
j*mi_lj*Bi(E = ]*FQ'L_ITZS(E = j*]E‘Qi_lTiQS
and . .
3:FQ'j*Biy1 = 5, FQ ' QT3418

one can prove that ¢; = 7,FQ' 1h;s, where h; has been defined in (3.1.2), but we will not need that
result in the rest of this paper.

Summing up (3.3.2) and (3.3.3), for any d > 1 we obtain a commutative diagram of functors from
B2 to Perv’(X, %) = Ax

) gd-1
7 FsTd—! 2 By3Fil = egd-l
jsFasTd—1 A1 gd-1
R _ 1B, gd-1 _
. Fj*By gt 22 o B, T
¢lfd—2 @)\QTd_Z
¢a—2% dAg_1¥
. . w1B; %
jsFQ4 2By 1% — ® 1B, 1T
ba—1 ®Ag
. . iB
7. FQ*"j*By - 4B,

Compositions of vertical arrows give rise to the natural isomorphism Id%% = DyB,; we wanted and
the first part of the proof of theorem 3.5 is finished.

Second part:
In this part we prove that for any d-perverse sheaf K, there exists a natural isomorphism K =~
B;D,K. We are using notations of (2.1.4). We proceed by induction on d > 1.

For any d-perverse sheaf we know (theorem 2.6) that Ry K € P and
NUK = j,Fj*K -5 ®K.

13



Let us call )
wi 1 K 5 CULF*K -5 ®K)
the composition of isomorphism
ul
Nryk : SRYK — CNOQRYK = CNYK = C(5.Fj* K — ®K)

defined in (2.1.4) and isomorphism K = SRy K of (10).

Functors v, 2, N commute with j* and we can identify

uj 1 . j* .
FCGF K 25 oK) £ O(F* K 2% Qj* K). (19)

Then, by using (8) we obtain

jwk = —ajox K — C(Fj* K 25 Qj* K). (20)

ul
For d = 1 we have B,D, K = j,Fj* K - ®K which is isomorphic to

1 1
Cj.Fji*K 25 oK) = j,Fj* K —5 oK
by means of (1, —1). The composition of this last isomorphism with wg gives rise to an isomorphism
5}{ K — BlDlK

natural with respect to K € Perv' (X, Y) such that j*0% = —a;-xk-

Now let d be an integer > 2 and suppose there exists §¢ ! : Idpepya-1(x 5 = By 1Dy 1 such that
76 = (-1)" g 1 j* — j*By1Day = Ty15Dg—1 = Ty_1j”. (21)
Isomorphism
(€',1) : Dy = (Qj*, % u, &%) — Dy 1® = (§*®, % ui'd, £ ®)
allows us to identify both functors and, by (21) we obtain
(j*041®@) o (5 u') = (—1)*"¢°%" : Fj* — j*Bg 1Dg 1® = j*Ba 13Dy = Ty 1Qj".

Then (0971®) o u! = (—1)415,¢%* and

d—1 c s ul ~ cmex (1) kgl
C(1,07°®) : C(j.Fj* — @) = C(j.Fj* ————— By_1%Dy),

but

=0 * ;A d—3()5*
By 1TD, = jFQj* F0Es . 2 RQi2Q S 0ilo
and 7, 'Qj* = j.g's*. In particular, by using (7) we deduce an isomorphism
. - ul
C(j.Fj* — @) ~

_a\d s 0% IS P g o ad=2 % _ud
iF (=1)%j=9" jRQjr S L T S e y O (22)
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and the complex (22) is isomorphic to

d—2

J+g°3* FQj* Geg'd" | 349

. d
BdDd = ]*F — .7* ! > j*FQd_l u_> (I)d

by means of
(1)1 —1,1,—1,..., (=) (=1)%).

By composing isomorphisms above with w we obtain an isomorphism

: Perv

67 : Idperye(x ) = BaDa

such that
j*? = (1) H—aj*) = (-1)%aj*

and the proof of theorem 3.5 is finished.

4 Applications

4.1 Explicit models for perverse sheaves

Theorem 3.5 provides explicit models (16) for d-perverse sheaves. Actually, functor B, factorizes
through the category of bounded complexes C*(Bx) and it defines a faithful exact functor By : Bg —
C’(Bx) establishing an equivalence of categories between B% and a non full abelian subcategory of
C’(Bx), whose objects are precisely complexes of the form (16). In particular, inclusion functor
Perv?(X,¥) C Dx can be lifted to an exact faithful functor Perv®(X,¥) — C*(Bx).

The lifting above allows us to describe in a concrete way the realization functor (see [1], 3.1.9)
real : D(Perv?(X,Y)) — Dx

by taking single complexes associated with double complexes.

When no functor F is available for the given subcategories 2, C B,, we can always work at the level
of the full derived categories D' (28,) by using, for instance, Godement functor F = A,A*, as shown
in examples (1.1.1), (1) and (2.2.3), (1). The corresponding category of perverse sheaves Perv?(X, ¥)
(without any constructibility conditions, i.e. 2, = B,) is, by theorem 3.5, equivalent to B¢, whose
objects are 3.1 the (£, F,u,0) where L € By, F € By, u: j,FQ 1L - Fand 0 : QUL = j*F
such that u o j*gﬁ_2 =0(ifd>2)and oo qfé‘l = j*u, and whose morphisms from (£, F,u,0) to
(L', F',u',0") are defined as the pairs (f, g) where f: L — L', g : F — F' are morphisms such that
w0 (.FQ1 f) = g ou.

Let us call Perv?(X,Y) the category of perverse sheaves “constructible” with respect to 2, C *B,.
It is a full (abelian) subcategory of Perv?(X,¥) and then it is equivalent to the full subcategory B
of B whose objects are the (£, F,u,0) such that £ € Ay and morphism u : G4_; £ — F has kernel
and cokernel in Ax.

So, even when no functor F is available for the given subcategories 2, C ®B,, explicit models and
liftings as above also exist.

(4.1.1) EXAMPLE. (Perverse sheaves categories which split) In example (1.1.1), (2), let d > 2 be an
integer and let us suppose S a “good” compact, connected and simply connected topological space,
and k a field such that

H(S,k)=0 Vi=1,...,d. (23)
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For example, S can be the (n — 1)-dimensional sphere and X the n-dimensional disk, stratified
by the origin and its complement, for n > d, or in singularity theory, (X,0) C C%! is an isolated
hypersurface singularity with complex link S a topological (exotic) sphere [11], §8.

Let us consider the category of ¥-constructible complexes of sheaves of k-vector spaces of arbitrary?
rank on each stratum which are d-perverse sheaves, denoted by Pervf(X ,%). It is a full subcategory of
the category of d-perverse sheaves (Without constructibility conditions) Perv?(X, ), which is equiv-
alent by theorem 3.5 to category B¢, with F a functor satisfying the conditions (2.2.1) (see (2.2.3),
(1)).

Since S is simply connected, any locally-constant sheaf £ of k-vector spaces on U is constant with
fiber E=T(U, L) ~ k" and

(R'j.L)e = li_r)r(}Hi(]O,e[xS, L) =H(S,E)=0, 1<i<d.

In particular, the sequence
0= j L 2% j,FL 2%, 5,Q0 — 0

is exact and R'j,QL ~ R**!j, L for all i > 1. Reasoning inductively we obtain that the sequences

]*qL

0= Qe 2%y FQi-te L QL 0, i=1,....d (24)

are exact.

Given a constructible d-perverse sheaf K € Perv®(X,X), let us denote (£, F,u,0) = DgK its

corresponding object of B¢ by means of theorem 3.5. Now K is naturally isomorphic to
9} g3 ? u

G PQL =5 ... L S RQTIL S (25)
The exactness of (24) for i = d — 1,d implies that coker j,¢%> = 7, QL. Let s : j,Q*L — F be the
morphism induced by u, whose restriction to U coincides with 0. Now, ¢ being an isomorphism, the
adjunction properties for (j*,j,) give us a morphism t : F — j,Q¢L verifying ts = 1. Then, complex
(25) is the direct sum of j,73L and (kert)[—d]. On the other hand, the exactness of (24) implies the

J«LaL is concentrated in degree 0, its 0O-cohomology being equal to 7.£ and, thus, a constant sheaf.
Finally, we obtain a natural isomorphism

]*QL

J«FL —=

K ~ (h°K) ® (h"K)|—d]

expressing the category Pervf(X ,2) as a direct sum of the category of constant sheaves of k-vector
spaces in X and the category of k-vector spaces, considered (this last category) as the category of
complexes of sheaves on X concentrated in degree —d and supported by the vertex C.

This is a purely topological result related to a well-known result of Kashiwara-Kawai [6] (see [9],
6.5, p. 427). It can be also directly deduced by using functors j7, j? instead of our models. Namely?,
our hypothesis imply that j7j*K = j?j*K = j.L ~ h°K and then, from the canonical morphisms

JitK = K — jlj"K

we deduce that h°K is a direct factor of K.

'We may also consider only sheaves of finite rank.
2We owe this remark to P. Deligne.
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4.2 Perverse sheaves categories as full abelian subcategories of K’(Bx)

In this section we show that functor By : BE — K& (Byx) is fully faithful and then the inclusion
functor Perv?(X,¥) C Dy lifts to a fully faithful functor Perv?(X, ) — K (Bx). In particular,
category Perv?(X, ) is realized as a full abelian subcategory of Ky (Bx).

Theorem. 4.1 Functor By : B% — K& (Bx) is fully faithful.

Proof: Let O; = (L;, Fi,u43,0:), i = 1,2 be two objects in B%. We have to prove that

Bd . Hom%% (01, 02) — Home(%X)(Bd(’)l, BdOQ)

is bijective.
INJECTIVITY: Although the injectivity of By is a consequence of theorem 3.5 (the morphism By :
Homga (01, Oz) — Homp, (Ba(O1), Ba(O2)) is bijective), we give here a direct independent proof.

Let (f,g9) : O; — O be a morphism such that By(f,g) is null-homotopic. We obviously have
f=7"h"By(f,g) = 0 and By(0, g) is null-homotopic.

There exist s' : j,FQ"Ly — j,FQ" 'Ly, i =1,...,d—1, s : F; — j,FQ* ' L; such that s'oj, g} =
07 SQOj*gAlcl +]*gg2 OSl = 07 ey Sdoul +j*g?:;208d71 = 01 g = U,QOSd’
j*!]%l j*gil

JFLy — 7.FQL, 7. FQ1 L, N

| e

]*]F£2 - e j*m@d_Q»CQ T;j*mdil»CQ —uQ> '7:2'

0 .
I+9c, Ix9z,

In degree 0, from 0 = j*s' o g} = j*s' o aj oqr, we deduce 0 = j*s' o aj and then, there

J
exists t' : Q®°Ly — FLy s.t. t' oqp = j*s'. From lemma 1.4, there exists 7' : FQ*L; — FL; s.t.
1.2 1
T ooy =1

In degree 1, from
0=j*s"ogp, +9gp,05%s" = (j*s* + gp,0m!) 0 aZ, o,
we deduce
0=(j*s*+gp,0T")oaz,
and then, there exists t> : Q*°L; — FQL, s.t.
J*s + g, 0T =t oqp,.
From lemma 1.4 again, there exists 7% : FQ*£; — FQL; s.t. 720 =t
We inductively construct
QML s FQUTIL,, 2<i<d-—1,

T FQU L, - FQUIL,, 2<i<d—2

such that . . . o
L(]"C_2207'Z_1+j*sZ =t'oqy, 2<i<d-—-1,

Toafl=¢, 2<i<d-2
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Let us identify j*F; = Q“Ly, j*u; = ¢&," by means of ;.

d

In degree d — 1, from 0 = s% o u; + j. g, 0 54! we deduce first

d—1 d—3 —
© qL‘1 - ng °T

_ (j*sd +g%;2 otdq) o qE1

0= j*sd o q?::l + 92;2 Oj*Sd_lzj*Sd o q?::l +gg’;2 O(

and second
0=j*s*+ g% ot
But s? is determined by its restriction j*s¢
s = =(jug,”) 0 (ut") o (ad)),
where adj : Fi — j.5*F1 = 5.Q%L; is the adjunction morphism. Then
g=1us0st=—uyo (j*ng) o (j*td_l) o(adj) =0
and injectivity is proven.
SURJECTIVITY: We need to prove that for any morphism of complexes F* : B;O; — B3O, there
exists (f,g) : O1 = Os s.t. By(f,g) is homotopic to F*.
Obviously, morphism f : £; — £, must be equal to j*h°F®.

Let us consider the following commutative diagram with exact arrows

0
94

0 s L, —5, T, s FQL,

01 j*FO—Ffl j*Fl—lF@fl

0
9z,

0 s Ly —224 B, s FQL,.

There exists of : QC; — FLy s.t. ofoqe, = 7*F°—Ff. From lemma 1.4, there exists o' : FQL; — FL,
s.t. o' ooy, =0, and then o' o g} = j*F°—Ff. Writing s' := j,o', we have s' 04,92 = F°— j,Ff.

~Ina fimilar' vgay, .Wle inducicively colnsltruct st j*E’Qiﬁl — j*lF'Qi_ILQ, i =2,...,d—1, s.t.
§'0Jugr, +Jugp, 08 = F'"7 — 5,FQ" f. Let us write o = j*s".
In degree d — 1 we have
(j*Fd—l - IEQd—lf o 92;2 o O_d—l) o O[%:l o sz —
— (P —FQELf — 92;2 00?1 o g%IQ _
— gg;Q o (j*Fd—Q o IFQd—Qf o j*Fd_2 + ]FQd—Qf . g%;?) o O'd_2) =0

and then
0= (j*Fd—l — Q4L — ggz ° Ud—l) o a%:l'

There exists of : QYL — FQ4 1L, s.t.
0_(()1 o qZII — j*Fd—l _ E@d—lf _ 92;2 o O'd_l.
Since j*F; = Q?L;, morphism o determines another morphism s? : F;, — j,FQ4~! L, s.t.

Sd o uy _{_]*gZQQ o Sd—l — Fd—l . j*FQd—l f
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To finish, we take
g:=Fd—ugosd:.7-"1 — Fo.

An straightforward computation shows that (f,g) : O; — O, is a morphism in B¢, and clearly the
st i=1,...,d, give an homotopy between F* and By(f,g). Q.E.D.

Corollary. 4.2 The inclusion functor Perv?(X,X) C Dy = D;X (Bx) lifts to a fully faithful functor
Perv?(X,Y) — K%X(% x). In particular, category Perv®(X,¥) is realized as a full abelian subcategory
of Ky (Bx).

Proof: 1t is a direct consequence of theorems 3.5 and 4.1. Q.E.D.

4.3 Conical perverse sheaves with respect to a K(m, 1) basis

In case of examples (1.1.1), (2) and (2.2.3), (2), we suppose that S is connected and its universal
covering space is contractible. Let us choose a base point zy € S and let us denote H = m1(S, zg) =
m1 (U, x). Let Ay be (resp. 2Ax) the abelian category of locally constant sheaves of k-modules (not
necessarily finitely generated) on U (resp. of Y-constructible sheaves of k-modules on X). We can
take F = p,p*, where p is the universal covering space of (U, zy).

Objects of category Perv?(X, X)) C D _(kx) are called “conical perverse sheaves” in [13], def. (2.1.1)
and rem. (2.3.7).

(4.3.1) The standard equivalence of categories between 2y and Mod(k[H]) allows us to translate the
exact sequence of functors of Ay
0-Id3FHQ—0

in the following way. For each k[H]-module E' we have:

1) FE = E# = {f : H — E}, where the action of H is given by (hf)(c) = f(ch), f€ E% h,0 € H.
2) Adjunction morphism ag : E — FE is given by (age)(o) = oe, e € E,0 € H.

3) QE ={v: H— E | ¥(1) = 0}, where the action of H is

(h)(0) = $(oh) —ow(h), € QE,0,h € H.
4) Morphism ¢z : FE — QF is given by
(guf)(o) = f(o) —af(1), fE€FE=E" oecH.

5) The application ¢ : e € E s c(e) € E¥, where c(e)(c) = e for any 0 € H, gives rise to a natural
identification F = (FE)™.
6) For any r > 1 we have a natural identification

QE={¢:H —E|¢(h,...,h) =0 if 3j,h; =1}

where the action of H is given by

T

(hrsr)(hay - he) = (=177 (ha, - hicy, hibisr, Bisa, - heg)+
ljrl(—1)rh1¢(h2, o hes).
7) Morphisms ¢}, : FQ"E — Q' E, g%, : FQ"E — FQ™' E (see (3.1.1)) are given by
(@B f) (P, by hegr) = f(Rega)(has s he) = [hegd f(D](Aas -5 Be),
(95f)(0) =o(apf), [E€FQE=(QE), h,...,hy1,0 € H.
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8) By 5), morphism o}, := (¢%)"™ : (FQ"E)™ = QU E — (FQ""' E)"™ = ! is

(QTEw)(hla caey hr+1) = w(hla ceay h,«) - (hT+1w)(h1, ceey hr)

forr > 1,19 € QE, h; € H. For r = 0, morphism 0% := (¢%)™ : (FQ°E)"™ = F — (FQ'E)™ =
Q*tis
(o%e)(h) =e—hie, e€ E h € H.

Remark. 4.3 The complex (F E, ¢;)r>0 is the usual complex of E-valued cochains obtained from the
normalized bar resolution [7], chap. IV, §5.

(4.3.2) Category 2Ax is equivalent to the category

-) whose objects are triplets (V, W, ) where V is a k[H]-module (representing the restriction j* of a
constructible sheaf), W is a k-module (representing the fiber i* at F' of a constructible sheaf) and
¢ : W — V™ is a k-linear morphism (representing the adjunction morphism i* — 7*7,j*).

-) whose morphisms are defined in the obvious way.

By (4.3.1), (4.3.2) and the fact that sheaves on X are determined by their restrictions j*,¢* and the
adjunction morphism 7* — 7*4,5*, we deduce that category B¢ is equivalent to the category €%(k, H):
-) whose objects are 4-uples (E, M, u,v) where E is a k|H]-module, M is a k-module and u, v appear
in a commutative diagram

d—2 d—1

Qd—QE %5 R 71E %e (QdE)sz

such that u o ng_2 =0,ifd > 2.
-) whose morphisms are defined in the obvious way.

By theorem 3.5 we conclude that the category of d-conical perverse sheaves is equivalent to
¢i(k, H).
In case d = 1, by defining v,(y) = —v(y)(0), 0 € H,y € M, we obtain an equivalence between
¢'(k, H) and the category of k-module diagrams
E M
{veloen

such that
(1) v;g = v, 0uUO U, + v, + v, for all o,7 € H.
(2) 1g + v, o u is an automorphism of E for any o € H.

Property (1) comes from the fact that v(y) € (QE)™ for every y € M. In property (2), automor-
phism 1z + v, o u coincides with the action of ¢ on F.

In this way we find a new proof of theorem (2.3.4) in [13]. This theorem is a natural generalization
of the first known case [2] on explicit description of perverse sheaves, namely S = S' H = Z. (see
also [10], [12]).

4.4 Explicit description of perverse direct images and intersection com-
plexes

In this section we give models (16) for j* L, jF £ and j.L, where £ is an object of ;. The computations
consist of interpreting the proof of theorem 1.4.10 in [1] in terms of our (I, Q)-resolutions (13).
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(4.4.1) For each £ € 2y we have a natural isomorphism
Da(j2L) = (£,5.Q"L, jugz, 1).

In particular the complex

JFC %, QL P L 2 pgii s M e
(in degrees [0, d]) is an explicit model for j2L£, which coincides with 7<4Rj, £ [1], prop. 1.4.23.
(4.4.2) For d =1 we have a natural isomorphism
D\(j{L) ~ (L, j.FL/j L, can, 1).

In particular the complex
§FL 25 4. FL/5 L
in degrees 0, 1) is an explicit model for jP£. It is quasi-isomorphic to 7L since jiL is 1-perverse.
g !

For d > 2 we have a natural isomorphism
Dy(§PL) ~ (L, coker 7,g% 2, can, 1).

In particular the complex

. . d—2
9. Jgy
N

3 FL > . FQ4 L =5 coker j,g%?,

(in degrees [0, d]) is an explicit model for j7L£, which coincides with 7<4_oRj, £ [1], prop. 1.4.23.

(4.4.3) By interpreting natural morphisms j' £ — j2£ on models above, we have a natural isomor-
phism

Dd(]'*ﬁ) = (E’ Imgj*quflﬁaj*q@dflﬁa 1)
In particular the complex

j*qu— 1o

I . d-2
GFL Z5 - T FQU L S5 Tmg g

(in degrees [0, d]) is an explicit model for the intersection complex IC(L) = ji,. L, which coincides with
T<i—1Rj, L [1], prop. 1.4.23.

4.5 Further results

Following a suggestion of Deligne, explicit models of perverse sheaves can be constructed by using
other functorial resolutions instead of (13). For instance, given F = FG : A = By — A = By,
a : 1 — T under the conditions of (1.3.1), with F*L j,-acyclic for k > 1 and £ € 2y, and not
requiring F(Ay ) C ™Ay, we can use the “simplicial” resolution

80 81 3d—2 ad—l
FoLRP S 52—

where . . . . .
0" = o' —FaF* + ---+ (—=1)™"'FHa

(cf. [4], Appendice, 5 and [8], VII, 6). This is the aim of an article in preparation.
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