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Abstract

We show how to express any Hasse-Schmidt derivation of an algebra in terms of a
finite number of them under natural hypothesis. As an application, we obtain coefficient
fields of the completion of a regular local ring of positive characteristic in terms of Hasse-
Schmidt derivations.
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Introduction

Let k −→ A be a ring homomorphism. Hasse-Schmidt derivations of A over k are general-
izations of usual derivations, but they do not carry an A-module structure. Nevertheless,
Hasse-Schmidt derivations have a non abelian group structure lifting the addition of deriva-
tions.

In this paper we show how to express any Hasse-Schmidt derivation in terms of a finite
number of them under very reasonable conditions. In proving our result, we find a natural
way of producing “non-linear combinations” of Hasse-Schmidt derivations which, to some
extent, could play the role of the A-module structure of derivations.

As an application, we express coefficient fields of the completion of a regular local ring
of positive characteristic in terms of Hasse-Schmidt derivations, generalizing a similar result
in characteristic zero.

Let us now comment on the content of this paper.

In section 1 we recall the notions of Hasse-Schmidt derivation and differential operator.

∗Both authors are partially supported by DGI, BFM2001-3207.
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Section 2 deals with the main result of this paper, namely that any Hasse-Schmidt
derivation D can be expressed as “non-linear combination” of a finite number of them
D1, . . . , Dn whenever their degree 1 components D1

1, . . . , D
n
1 generate the module of usual

derivations.

In section 3 we apply our main result to generalize a well known theorem of Nomura
and to obtain coefficient fields of the completion of noetherian local regular rings in the
positive characteristics case.

Our results seem related to some results in [8]. We hope to return to this relationship
in a future work.

We thank Herwig Hauser for pointing out a gap in the statement of proposition (2.7) in
an earlier version of this work.

1 Preliminaries and notations

All rings and algebras considered in this paper are assumed to be commutative with unit
element.

(1.1) Hasse-Schmidt derivations (cf. [2] and [6], §27).

Let k
f−→ A

g−→ B be ring homomorphisms. Let t be an indeterminate over B, and set
Bm = B[t]/(tm+1) for m ≥ 0 and B∞ = B[[t]]. We can view Bm as a k–algebra in a natural
way (for m ≤ ∞).

A Hasse–Schmidt derivation (over k) of length m ≥ 1 (resp. of length∞) from A to B, is
a sequence D = (D0, D1, . . . , Dm) (resp. D = (D0, D1, . . . )) of k–linear maps Di : A −→ B,
satisfying the conditions:

D0 = g, Di(xy) =
∑

r+s=i

Dr(x)Ds(y)

for all x, y ∈ A and all i > 0. In particular, the first component D1 is a k-derivation from
A to B. Moreover, Di vanishes on f(k) for all i > 0.

Any Hasse-Schmidt derivation D is determined by a ring homomorphism

E : x ∈ A 7→
m∑

i=0

Di(x)ti ∈ Bm

with E(x) ≡ g(x) mod t.
When A = B and g = 1A, we simply say that D is a Hasse-Schmidt derivation of

A (over k). We write HSk(A,B; m) for the set of all Hasse-Schmidt derivations (over k)
of length m from A to B, HSk(A,B) = HSk(A,B;∞), HSk(A; m) = HSk(A,A; m) and
HSk(A) = HSk(A,A;∞).

We say that a k-derivation δ : A → B is integrable [5] if there is a Hasse-Schmidt
derivation D ∈ HSk(A,B) such that D1 = δ. The set of integrable k-derivations from A to
B, denoted by IDerk(A,B), is a submodule of the k-derivations B-module Derk(A,B).
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(1.2) Differential operators (cf. [1], §16, 16.8).

Let f : k → A be a ring homorphism.

For all i ≥ 0, we inductively define the subsets D
(i)
A/k ⊆ Endk(A) in the following way:

D
(0)
A/k := A ⊆ Endk(A), D

(i+1)
A/k := {ϕ ∈ Endk(A) | [ϕ, a] ∈ D

(i)
A/k, ∀a ∈ A}.

The elements of DA/k :=
⋃

i≥0

D
(i)
A/k (resp. of D

(i)
A/k) are called linear differential operators

(resp. linear differential operators of order ≤ i) of A/k. The family {D(i)
A/k}i≥0 is an increa-

sing sequence of (A,A)–bimodules of Endk(A) satisfying:

D
(1)
A/k = A⊕Derk(A), D

(i)
A/k ◦D

(j)
A/k ⊂ D

(i+j)
A/k ,

and [P, Q] ∈ D
(i+j−1)
A/k for all P ∈ D

(i)
A/k, Q ∈ D

(j)
A/k. Hence, DA/k is a filtered subring of

Endk(A). Moreover, linear differential operators of A/k are I–continuous for any I–adic
topology. In particular, for any linear differential operator P of A/k, there is a unique
extension P̂ ∈ DÂ/k to the completion Â of A for any separated I–adic topology.

For each D ∈ HSk(A; m), one easily proves that Di ∈ D
(i)
A/k and then there is a unique

extension D̂ ∈ HSk(Â; m).
In a similar way, if S ⊂ A is a multiplicatively closed subset, any Hasse-Schmidt deriva-

tion of A/k extends uniquely to a Hasse-Schmidt derivation of S−1A/k.

(1.3) Taylor expansions (cf. [7]).

Let n ≥ 1 be an integer. We write X = (X1, . . . , Xn), T = (T1, . . . , Tn), X + T =
(X1 + T1, . . . , Xn + Tn) and, for α, β ∈ Nn, Xα = Xα1

1 · · ·Xαn
n , |α| = α1 + · · · + αn,

α! = α1! · · ·αn! and
(
β
α

)
=

(
β1

α1

) · · · (βn

αn

)
.

We consider the usual partial ordering in Nn: β ≥ α means β1 ≥ α1, . . . , βn ≥ αn. We
write β > α if β ≥ α and β 6= α.

Let A be the formal power series ring k[[X]] (or the polynomial ring A = k[X]). For
any f(X) =

∑

α∈Nn

λαXα ∈ A we define ∆(α)(f(X)) by: f(X + T) =
∑

α∈Nn

∆(α)(f(X))Tα. It

is well known that (cf. [1], §16, 16.11): ∆(α) ∈ D
(|α|)
A/k , ∆(α)(f · g) =

∑

β+σ=α

∆(β)(f)∆(σ)(g),

α!∆(α) = ( ∂
∂X1

)α1 · · · ( ∂
∂Xn

)αn and D
(i)
A/k =

⊕

|α|≤i

A ·∆(α) =
⊕

|α|≤i

∆(α) ·A.

(1.4) If we denote ∆(0,...,
(j)

i ,...,0) = ∆j
i , then ∆j = (1A, ∆j

1, ∆
j
2, . . . ) ∈ HSk(A).

Finally, let us recall the notion of quasi-coefficient field of a local ring.
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(1.5) Definition. (cf. [4], 38.F ) Let (R, m) be a local ring, K = R/m and k0 a subfield of
R. We say that k0 is a quasi–coefficient field of R, if the extension K/k0 is formally étale
(cf. [1], 17.1.1 and [4], 38.E).

In the case of characteristic 0, a field extension is formally étale if and only if it is
separably algebraic (cf. [4], 38.E). On the other hand, any extension of perfect fields of
characteristic p > 0 is formally étale.

The following proposition is well known.

(1.6) Proposition. Let k0 −→ k
f−→ A

g−→ B be ring homomorphisms and let’s suppose
that the extension k0 → k is formally étale. Then, HSk0(A,B; m) = HSk(A,B; m) for any
integer m ≥ 1 or m = ∞.

2 Generating Hasse-Schmidt derivations

Throughout this section, let k
f−→ A be a ring homomorphism.

We consider the following partial ordering in Nn: β º α means that β ≥ α and if αi = 0
then βi = 0.

Let us denote by N+ de set of strictly positive integer numbers.

Let N ≥ 2 be an integer and D, D1, . . . , Dn ∈ HSk(A; N). For each µ ∈ Nn we write
Dµ = D1

µ1
◦ · · · ◦Dn

µn
. Let Cld be elements in A, 1 ≤ d ≤ n, 1 ≤ l ≤ N − 1, such that

Di =
i∑

m=1




∑

|λ|=i
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd




Dµ (1)

for all i = 1, . . . , N − 1, where we write

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd = 1 if µd = λd = 0. (2)

Observe that the set N0
+[= N∅+] has only one element and convention (2) follows by defining

|l| = 0 for l ∈ N0
+. Then we have |l| º r for any r ≥ 0 and any l ∈ Nr

+ .

(2.7) Proposition. Under the above hypothesis, the k-linear map

δ = DN −
N∑

m=2




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd




Dµ
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is a k-derivation of A.

Proof. Let us take a, b ∈ A. Since

Dµ(ab) =
∑

ρ+σ=µ

Dρ(a)Dσ(b),

we obtain

δ(ab) = DN (a)b + aDN (b) +
∑

v+w=N
1≤v,w≤N−1

Dv(a)Dw(b)−

−
N∑

m=2




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd



·
( ∑

ρ+σ=µ

Dρ(a)Dσ(b)

)
=

= DN (a)b + aDN (b) +
∑

v+w=N
1≤v,w≤N−1

Dv(a)Dw(b)−

−
N∑

m=2




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd



· (Dµ(a)b + aDµ(b))−

−
N∑

m=2




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd



·




∑
ρ+σ=µ
ρ,σ>0

Dρ(a)Dσ(b)


 =

= δ(a)b + aδ(b) +
∑

v+w=N
1≤v,w≤N−1

Dv(a)Dw(b)−

−
N∑

m=2




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd



·




∑
ρ+σ=µ
ρ,σ>0

Dρ(a)Dσ(b)


 .

We need to prove that ∑

v+w=N
1≤v,w≤N−1

Dv(a)Dw(b) =
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=
N∑

m=2




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd




·




∑
ρ+σ=µ
ρ,σ>0

Dρ(a)Dσ(b)


 .

But

∑

v+w=N
1≤v,w≤N−1

Dv(a)Dw(b) =

=
∑

v+w=N
1≤v,w≤N−1




v∑

r=1




∑

|τ |=v
|ρ|=r
τºρ

n∏

d=1

∑

l′∈Nρd
+

|l′|=τd

ρd∏

q=1

Cl′qd




Dρ(a)



·

·




w∑

s=1




∑

|ω|=w
|σ|=s
ωºσ

n∏

d=1

∑

l′′∈Nσd
+

|l′′|=ωd

σd∏

q=1

Cl′′q d




Dσ(b)




=

=
∑

v+w=N
1≤v,w≤N−1

N∑

m=2

∑
r+s=m
1≤r≤v
1≤s≤w

∑

|τ |=v,|ω|=w
|ρ|=r,|σ|=s
τºρ,ωºσ


n∏

d=1

∑

l′∈Nρd
+

|l′|=τd

ρd∏

q=1

Cl′qdDρ(a)


 ·




n∏

d=1

∑

l′′∈Nσd
+

|l′′|=ωd

σd∏

q=1

Cl′′q dDσ(b)


 =

=
N∑

m=2

∑

|λ|=N
|µ|=m
λºµ

∑
ρ+σ=µ
ρ,σ>0

∑

τ+ω=λ
τºρ,ωºσ




n∏

d=1

∑

l′∈Nρd
+

|l′|=τd

ρd∏

q=1

Cl′qdDρ(a)


 ·




n∏

d=1

∑

l′′∈Nσd
+

|l′′|=ωd

σd∏

q=1

Cl′′q dDσ(b)


 =
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=
N∑

m=2

∑

|λ|=N
|µ|=m
λºµ

∑
ρ+σ=µ
ρ,σ>0

∑

τ+ω=λ
τºρ,ωºσ

n∏

d=1

∑

l′∈Nρd
+ ,|l′|=τd

l′′∈Nσd
+ ,|l′′|=ωd




ρd∏

q=1

Cl′qd ·Dρ(a)







σd∏

q=1

Cl′′q d ·Dσ(b)


 =

=
N∑

m=2

∑

|λ|=N
|µ|=m
λºµ

∑
ρ+σ=µ
ρ,σ>0

n∏

d=1

∑

τd+ωd=λd
τdºρd,ωdºσd

∑

l′∈Nρd
+ ,|l′|=τd

l′′∈Nσd
+ ,|l′′|=ωd




ρd∏

q=1

Cl′qd







σd∏

q=1

Cl′′q d


Dρ(a)Dσ(b) =

=
N∑

m=2

∑

|λ|=N
|µ|=m
λºµ

∑
ρ+σ=µ
ρ,σ>0

n∏

d=1

∑

l∈Nµd
+ =Nρd

+ ×Nσd
+

|l|=λd

[l=(l′,l′′)]




µd∏

q=1

Clqd


Dρ(a)Dσ(b) =

=
N∑

m=2




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd



·




∑
ρ+σ=µ
ρ,σ>0

Dρ(a)Dσ(b)




and the proposition is proved. Q.E.D.

(2.8) Theorem. Let m ≥ 1 be an integer or m = ∞. Let D1, . . . , Dn ∈ HSk(A; m) be
Hasse-Schmidt derivations of A/k such that their components of degree 1, D1

1, . . . , D
n
1 , form

a system of generators of the A-module Derk(A). Then, for any Hasse-Schmidt derivation
D ∈ HSk(A; m) there exist Cld ∈ A, 1 ≤ d ≤ n, 1 ≤ l < m + 1, such that the equation (1)
holds for all i ≥ 1. Moreover, if {D1

1, . . . , D
n
1 } is a A-basis of Derk(A), then the {Cld} are

unique.

Proof. We proceed by induction on i.

For i = 1, D1 is a derivation and so there exist C11, . . . , C1n ∈ A such that

D1 = C11D
1
1 + · · ·+ C1nDn

1 .

Let N be an integer ≥ 2 and suppose we have elements Cld ∈ A, 1 ≤ l ≤ N − 1, 1 ≤ d ≤ n
such that relation (1) is true for 1 ≤ i ≤ N − 1.

By proposition (2.7), the k-linear map

δ = DN −
N∑

m=2




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd




Dµ
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is a k-derivation of A. Then, there exist CNd ∈ A, 1 ≤ d ≤ n s.t.

δ = CN1D
1
1 + · · ·+ CNnDn

1

and

DN = δ +
N∑

m=2




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd




Dµ =

=
N∑

m=1




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Clqd




Dµ

and equation (1) holds for i = N .

Obviously the Cld are unique if {D1
1, . . . , D

n
1 } is a A-basis of Derk(A). Q.E.D.

(2.9) Remark. The Cld in theorem (2.8) depend on the order of the D1, . . . , Dn.

3 Applications: Coefficient Fields in positive characteristics

(3.10) Let (R, m, k) be a noetherian regular local ring of dimension n ≥ 1 containing a
field, X1, . . . , Xn ∈ m a regular system of parameters of R, k0 ⊂ R a quasi-coefficient field
and R̂ the completion of R. We can identify R̂ = k[[X1, . . . , Xn]] by means of a canonical
k0-isomorphism. Let ∂

∂X1
, . . . , ∂

∂Xn
be the usual basis of Derk(R̂) and ∆1, . . . ,∆n the Hasse–

Schmidt derivations of R̂ over k defined in (1.4).

Let us recall the following result of M. Nomura ([3], Th. 2.3, [6], Th. 30.6)

(3.11) Theorem. Under the hypothesis above, the following conditions are equivalent:

(1) ∂
∂Xi

(R) ⊂ R for all i = 1, . . . , n.

(2) There exist Di ∈ Derk0(R) and ai ∈ R, i = 1, . . . , n, such that Di(aj) = δij.

(3) There exist Di ∈ Derk0(R) and ai ∈ R, i = 1, . . . , n such that det(Di(aj)) /∈ m.

(4) Derk0(R) is a free R–module of rank n (and {D1, . . . , Dn} is a basis).

(5) rankDerk0(R) = n.
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The proof of the following corollaries are straightforward.

(3.12) Corollary. Under hypothesis and equivalent conditions of theorem (3.11), for any
basis D1, . . . , Dn ∈ Derk0(R), their extensions D̂1, . . . , D̂n to R̂ form a basis of Derk(R̂).
Moreover, the restrictions ∂

∂Xi
|R : R → R, i = 1, . . . , n, form a basis of Derk0(R).

(3.13) Corollary. Under hypothesis of corollary (3.12), let’s suppose that k0 is a field of
characteristic 0. Then, the set {a ∈ R̂ | D̂j(a) = 0 ∀j = 1, . . . , n} is a coefficient field of
R̂ (the only one containing k0).

The following theorem is an improvement of theorem (3.11) and is based on the results
of section 2.

(3.14) Theorem. Under the hypothesis of (3.10), the following conditions are equivalent:

(1) ∆j
i (R) ⊂ R, for all j = 1, . . . , n, i ≥ 0.

(2) There exist Di ∈ HSk0(R) and ai ∈ R, i = 1, . . . , n, such that

Dj
i (al) =

{
0 i ≥ 2, ∀j
δjl i = 1, ∀j, l.

(3) There exist Di ∈ IDerk0(R) and ai ∈ R, i = 1, . . . , n, such that det(Dj(al)) /∈ m.

(4) Derk0(R) is a free R–module of rank n and IDerk0(R) = Derk0(R) (and {D1, . . . , Dn}
is a basis).

(5) rank IDerk0(R) = n.

Proof.
(1) =⇒ (2) =⇒ (3), (4) =⇒ (5) are straightforward.
(3) =⇒ (4) comes from theorem (3.11).

(5) =⇒ (1): Let D1, . . . , Dn ∈ HSk0(R) such that D1
1, . . . , D

n
1 are linear independent over

R. Let us consider the extensions D̂
1
, . . . , D̂

n ∈ HSk(R̂), whose degree 1 components
D̂1

1, . . . , D̂
n
1 are also linear independent over R̂.

Following the lines of the proof of theorem (2.8), we are going to prove the following
result:
For any j = 1, . . . , n, there exist Cj

ld ∈ K = Q(R), 1 ≤ d ≤ n, 1 ≤ l < +∞, such that

∆j
i =

i∑

m=1




∑

|λ|=i
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Cj
lqd




D̂µ (3)
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for all i ≥ 1.

For1 i = 1, the ∆j
1 are k-derivations of R̂ and then there exist Cj

1d ∈ L = Q(R̂) such
that

∆j
1 =

n∑

d=1

Cj
1dD̂

d
1 .

Then, for any m = 1, . . . , n we have

δjm = ∆j
1(Xm) =

n∑

d=1

Cj
1dD̂

d
1(Xm)

and the matrix (D̂j
1(Xm)) with entries in R has a non-zero determinant. In particular

Cj
1d ∈ K.

Let us suppose that for N ≥ 2 there exist Cj
ld ∈ K, 1 ≤ d, j ≤ n, 1 ≤ l ≤ N − 1, such

that (3) holds for i = 1, . . . , N − 1. We can consider HSk(R̂) ⊂ HSk(L). By proposition
(2.7), for any j = 1, . . . , n the k-linear map

δj = ∆j
N −

N∑

m=2




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

Cj
lqd




D̂µ (4)

is a k-derivation of L. Let a ∈ R be a common denominator for the Cj
ld, 1 ≤ d, j ≤ n,

1 ≤ l ≤ N − 1. Then,

aNδj = aN∆j
N −

N∑

m=2




∑

|λ|=N
|µ|=m
λºµ

n∏

d=1

∑

l∈Nµd
+

|l|=λd

µd∏

q=1

(alqCj
lqd)




D̂µ

maps R̂ into R̂ and aNδj ∈ Derk(R̂). There exist C
j
Nd ∈ L, 1 ≤ d, j ≤ n, such that

aNδj =
n∑

d=1

C
j
NdD̂

d
1 .

Since the matrix (D̂j
1(Xm)) with entries in R has a non-zero determinant and (aNδj)(Xm) ∈

R (notice that ∆j
N (Xm) = 0), we deduce that C

j
Nd ∈ K. By setting Cj

Nd = a−NC
j
Nd ∈ K

we obtain the expression (3) for i = N .
1This is the same argument used in the proof of theorem (3.11).

10



From (3) we deduce that
∆j

i (R) ⊂ K ∩ R̂ = R,

for all j = 1, . . . , n, i ≥ 0, and (1) is proved. Q.E.D.

(3.15) Remark. As noticed in [4], page 289 for theorem (3.11), theorem (3.14) also
holds for HSk(R̂) ∩ HS(R) instead of HSk0(R), Derk(R̂) ∩ Der(R) instead of Derk0(R) and
{δ ∈ Der(R) | ∃D ∈ HSk(R̂) ∩ HS(R) s.t. D1 = δ} instead of IDerk0(R), and the mention
to a quasi-coefficient field can be avoided.

(3.16) Remark. We do not know any example of a noetherian regular local ring (R, m, k)
containing a quasi-coefficient field k0 (of positive characteristic) such that IDerk0(R) 6=
Derk0(R).

The following theorem generalizes corollary (3.13) to the case of characteristic p ≥ 0.

(3.17) Theorem. Under the hypothesis of (3.10), let D1, . . . , Dn ∈ HSk0(R) such that
their degree 1 components {D1

1, . . . , D
n
1 } form a basis of Derk0(R). Let D̂

1
, . . . , D̂

n
be the

extensions of D1, . . . , Dn to R̂. Then, the set {a ∈ R̂ | D̂j
i (a) = 0 ∀j = 1, . . . , n, i ≥ 1} is

a coefficient field of R̂ (the only one containing k0).

Proof. Since R̂ = k[[X1, . . . , Xn]], we have k = {a ∈ R̂ | ∆j
i (a) = 0 j = 1, . . . , n; i ≥ 1}.

By corollary (3.12) we deduce that {D̂1
1, . . . , D̂

n
1 } is a R̂–basis of Derk(R̂), and from theorem

(2.8) we can express the ∆j
i in terms of D̂j

i . In particular

{a ∈ R̂ | D̂j
i (a) = 0 ∀j = 1, . . . , n, i ≥ 1} ⊂ k.

The opposite inclusion comes from proposition (1.6). Q.E.D.
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