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Abstract

This paper extends previous results of the authors, concerning the behaviour of the equimul-
tiple locus of algebroid surfaces under blowing—up, to arbitrary characteristic.
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1 Introduction

Let K be an algebraically closed field of characteristic p and S = Spec(K[[X,Y, Z]]/(F')) an
embedded algebroid surface, which, with no loss of generality, can be considered to be defined

by a Weierstrass equation
n—1

F(Z)=2Z"+) a(X,Y)Z",
k=0
where n is the multiplicity of S, that is, ord (ag) > n —k for all k =0, ...,n — 1. After a change
of variables we can assume that either F, the initial form of F, is not a power of a linear form,
or F = Z". From now on, by a Weierstrass equation we will mean an equation like this.
In this situation the equimultiple locus of § is

£(S) = {P € Spec(K[[X,Y, Z]]) | F € P<">} ,

which is never empty, as M = (X,Y, Z) always lies in £(S). Note that all elements of £(S),
different from M, can be assumed to have the form P = (Z + G(X,Y),H(X,Y)).

Geometrically speaking, the equimultiple locus represents points at where the multiplicity is
the same than in the origin; hence they are the “closest” points to the origin, in (coarse) terms
of singularity complexity. We will note by £y(S) the subset of smooth elements of £(S).

In our previous paper [4] we prove a theorem relating & (5(1)) to £(S), where SW ig the
blowing—up of S centered in an element of £ (S). Our aim is extending this result to the case
p > 0 (see below for a precise statement).

The main difficulty in the positive characteristic case comes from the fact that, if p divides
n, we cannot apply the Tchirnhausen transformation. This deceivingly naive procedure assures
us, when it can be carried out, that:

(a) If F is the power of a lineal form (that is, if the tangent cone is a plane), then it must be
F=2"

(b) All the elements of £(S) contain Z.

(c) If, after blowing—up, the multiplicity remains the same, the above conditions still hold.

In our current situation, as we pointed out, one finds a regular parameter verifying (a) with
a simple change of coordinates. Moreover, after Mulay’s work ([2]) one can also find a regular
parameter verifying (b). We should note here that the outstanding result of Mulay is not con-
structive (much in the spirit of Abhyankar’s beautiful theory on good points [1]). Even though
one can manage to find a parameter verifying (a) and (b), the preservation of (a) and (b) under
certain blowing-ups is false in positive characterisitic, as it is well-known (see [3] for how this
might be overcome in a Levi-Zariski resolution).

The existence of such an amenable parameter would have made the null characteristic proof
remain for p > 0. The peculiarities of the case p|n have forced us to use completely different
strategies for most parts of the result, although our proofs also apply for the easier case.



2 Notation and technical results

For the sake of completeness (and for the convenience of the reader), we recall the basic facts
and technical results related to quadratic and monoidal transformations that were used in [4]
and which will be used afterwards.

For all what follows, let S be an embedded algebroid surface of multiplicity n,

n—1 n—1
F=2"+) Y apX'V7 | 2F=2"+> ap(X,Y)Z
k=0 \ 4,j k=0

a Weierstrass equation of S. We will note
N(F) = {(i,j,k) € N | ajj, # 0} .

Definition.— The elements of £(S) different from M will be called equimultiple curves. The
elements of & (S) other than M will be called permitted curves.
Remark.— In particular, we can assume P € &(S) to be, for instance (Z, X), after a suitable
change of variables in K[[X,Y]]. Note that the resulting equation will still be a Weierstrass
equation. Clearly (Z, X) € £(S) is equivalent to i + k > n for all (4,5, k) € N(F).

The monoidal transform of S, centered in (X, Z), in the point corresponding to the direction
(o :0:7) (say a # 0) of the exceptional divisor is the surface S(!) defined by the equation

7\" i+k—nvy/j 7\*
FO = (Z1 + E) + > XY (Z1 + E)
(4.4,k)EN(F)

Observe that this only makes sense (that is, gives a non—unit) whenever F(«,0,v) = 0. The
homomorphism

7TgDE:O:'y) : K[[X7 Y7 Z]] — K[[Xl,Yl,Zl]]
X — X3
Y — Y
Z — xi(z+2)
07

will be called the homomorphism associated to the monoidal transformation in (@: 0 : ) or, in
short, the equations of the monoidal transformation. The overline is because one must privilege
a non-zero coordinate, but all the possibilities define associated equations.

The quadratic transform (that is, blowing—ups with center M) in the point corresponding to
the direction (a : 8 : 7) (say a # 0) of the exceptional divisor is the surface S®) defined by the
equation

FO=(z2+ 1)+ 3 apuxith (Y1 + §>3 (2 + 1)'“.
Y ikeN) “ “

Again this only makes sense whenever F(a,3,7) = 0. Analogously, the homomorphism

Trég:ﬂ:'y) : K[[X’ Y’ Z]] — K[[X]_,Yi, Zl]]
X — Xi
Y — X (Yi+—§)
Z — X (z+7)
o



will be called the homomorphism associated to the quadratic transformation in (@ : S : y) or the
equations of the quadratic transformation.
Remark.— In the previous situation, consider a change of variables in K[[X,Y, Z]] given by

(p(X) = G,1X, + agY' + 0,32, + 1 (X,, YI, Z,)
(p(Y) = leI +b2YI +b3Z’+(p2(X’,Y’,Z’) ,
(p(Z) = ClX, + CQY’ + C3ZI + (pg(Xl, Y,, ZI)
with ord (¢;) > 2.
Assume also that

a = aid +af +azy

B = bia + bzﬁl + b37’

v = ad+cep +ey

with, say, v/ # 0. Then there is a unique change of variables ¢ : K[[X1,Y1,Z1]] —
K([[X;,Y{, Z{]] such that
M _ M
wﬂ'(a;ﬂw) - ﬂ(a’:ﬂ’:?)(p'

Definition.— Let Q € £(S), with Q = (Z + H(X,Y),G(X,Y)). Then for u € P?(K), the ideal

o [ m(Z+H(X,Y)) 1,/ (G(X,Y))
(@) X, ; X?rd(G)

is called the quadratic transform of ) in the point w.

Obviously, this definition makes sense only if the quadratic transform in the direction u does.
There is a natural version of monoidal transform of @ with center P, for all P € &(S).
Notation.— We will note by v the natural isomorphism

v: K[[X,Y,Z]] — K[[X1,Y1, Z1]]

sending X to X1, Y to Y7 and Z to Z;.

3 The theorem

We will restrict ourselves to the case which is interesting for desingularization issues: that where
S and S have the same multiplicity. This leaves out some situations.
Lemma.— If the tangent cone of S is not a plane, the multiplicity of any monoidal transform is
strictly less than n.

Proof.— See [4] for a characteristic—free proof.
Remark.— In particular, note that if the tangent cone is not a plane, there cannot be more than
one permitted curve. In fact, assume we have two curves, P and (), and choose Z to be a regular
parameter with P = (Z,G(X,Y)), Q = (Z, H(X,Y)). If F is a Weierstrass equation with the
usual form, then P is permitted if and only if G®*|ay, for all k = 0, ...,n — 1. As the same goes
for @, it is clearly impossible that there exists some ay with ord(ax) = n — k. Hence the tangent
cone must be a plane (in fact it must be Z = 0).
Theorem.— Let S be an algebroid surface and S®) a quadratic or monoidal transform of S
having the same multiplicity.
(a) Let SO be the monoidal transform of S with center P € &£y(S) then, either & (8(1)) =
v (£(S)) or & (SW) = v (&(S) \ {P}).
(b) Let S be the quadratic transform of S in the point w.

(b.1) If the tangent cone is not a plane then & (SM)) = v (&(S)).

(b.2) If the tangent cone is a plane then we can find three types of curves in & (8(1)):

(i) The exceptional divisor of the transform.



(ii) Primes wM(Q), with Q € £(S) \ £(S), which are tangent to the exceptional divisor.

u
(iii) Primes w(Q), with Q@ € &(S), where both v(Q) and @} (Q) are transversal to the
exceptional divisor. B
Moreover, if there is any prime of type (ii), it also appears the type (i) prime.
Proof.— Although some partial results are common to the characteristic 0 case, we will repeat
them or, at the very least, we will give a detailed outline when appropriate for the convenience

of the reader. In what follows let F' be, as usual, a Weierstrass equation of S.

This case presents the first (small) differences of argumentation with the characteristic 0, as
the reader can check with [4]. We have to prove that, after a monoidal transformation with
center P € £)(S) Q € &(S) if and only if v(Q) € & (8(1)), except maybe for Q = P.

Hence assume Z is a parameter verifying that for all I € £(S), Z € I. After a change of
variables in K[[X,Y]], we can assume P to be (Z,X) and @ (other than P) to be (Z,G(X,Y))
with ord(G) = 1. As we noticed above F = Z", hence there is only one direction in the
exceptional divisor, (1: 0:0). An equation for S(!) is then

n
ap(X1,Y;
PO = zp 4 3 %) e g S0 (x, v 2

and therefore G(X1,Y1)"*|al’) (X1, Y1) if and only if G(X,Y)"*|ay(X,Y). This finishes the
case.

Much like in zero characteristic, this case gives the basis for the other one. It is also the point
at where the main differences between both cases become notorious.
Remark.— First of all note that we can restrict ourselves to the case where the tangent cone is
Z =0 (this is as before an easy change of variables) and the direction in the exceptional divisor
is (1: 0:0). If this is not the case, for the results at points (1 : « : 0) it suffices considering the
(commutative) diagram

K[[X,Y, Z]] d - K[[X',Y",2"]
Wé\{[:a:o) Wé\f:o:o)
K[[X1, Y1, Z1]) v K[[X!, Y}, Z1]]

with ¢ given by

p(X) = X'
oY) = Y'+aX'
p(Zz) = Z'

Of course the results at (0 : 1: 0) are clearly symmetric.
Remark.— Assume that we have a permitted curve in SV of the general type, say, Q = (G1,Go),
with
Gi = o X1+ ,31Y1 + ’)’1Z1 + Gll (Xl,Yi, Zl) s where ord (Gll) >1
Gy = X+ BY1 + ’)’2Z1 + GIQ (Xl, Y1, Zl) ,  where ord (GIQ) >1

As the multiplicity remains the same, the monomial Z? must appear in F(1). Hence either v,
or 2 must be non zero. Let us suppose it is y; # 0 and so we can substitute G by its associated



Weierstrass polynomial with respect to Z;, of the form Z; + a(X;,Y7) with ord(a) > 1. Now we
change Z; by —a(X1,Y7) in G to obtain

Q = (Z1 + G,(Xl,Yl) ,CYQXl +,32Y1 + b(Xl,Yl)),

with ord(a), ord(b) > 1.

We will look first at permitted curves in S(!) which are transversal to the exceptional divisor.
Lemma.— In the hypothesis of case (b.2) assume that there is a permitted curve @ € & (8 (1))
which is transversal to the exceptional divisor. Then there exists some P € &y(S) such that
Q= wé‘{[z 0:0) (P) and v(P) is transversal to the exceptional divisor.

Proof.— In the above notation, @) is transversal whenever u # 0. In this case we can change
as X1 + BoY7 + b(X1,Y7) for its associated Weierstrass polynomial with respect to Y7 and then
make the corresponding substitution in a(X7,Y7) to obtain

Q= (Z1+d (X1), V1 +V (X1)),

with ord(a’) > 1, ord(¥) > 0. Consider then the following diagram
K[[X,Y, Z]| d - K[ X", Y, Z]]
™ (L0:0) m(1:0:0)

K[[X1, Y1, 2] d - K[[X}, Y}, 2]

with changes of variables

p(X) = X' P(X1) = Xj
(V) = Y'-X'b(X) p(Y1) = Y/ -b (X))
p(Z) = Z'-X'd(X') $(Z) = Z1—d (X))

As 9(Q) = (Z!,Y]), we know that (Z1,Y]) is permitted in (V). But, looking at the equations

of the transformation wf\{{ 0:0) this clearly implies that (Z’,Y”) was permitted in S. Therefore
P=y¢ ' (ZY') = (Z + Xa(X),Y + Xb(X))

was permitted in S. It is clear that v(P) is transversal to the exceptional divisor and wg\{{ 0:0) (Q) =

P. This proves the lemma.

Now we will prove that the existence of permitted curves tangent to the exceptional divisor
implies that the exceptional divisor lies in & (S (1)). We will do it without using the fact that F
is the power of a linear form, and so it will be still valid for case (b.1).

Lemma.— In the hypothesis of case (b) assume that there is a permitted curve P € & (S (1))
which is tangent to the exceptional divisor. Then the exceptional divisor lies in & (S()).

Proof.— From the remarks at the beginning of this case we can already assume that P has

the form
P = (Z1 + a(Yl),Xl + b(Yl)) , with ord(a),ord(b) > 2.

The proof is considerably different, depending on whether a(Y7) is zero or not. Let us assume
a(Y1) = 0 (this is the easy part) and let us write F(U) as usual:

n—1
FU = z0 4 ZGS) (X1,Y1) ZF,
k=0



with
ol (X1,Y1) = b (X1, Y1) (X1 + b(V1)"*, k=0,...,n — 1.

Let us take any k € {0,...,n — 1}, let ¢ = ord(b) > 2 and let us call X7Y} the smaller
monomial with respect to the lexicographic order appearing in by (X1,Y1). Then the monomial
X{"l/'l‘g—Ht(TFIC)Z{c must occur in ag) (X1,Y1) ZE.

Now, as this monomial appears after a quadratic transform in the point (1 : 0 : 0) of the
exceptional divisor it is clear that it must hold

r>s+tin—k)+k—n>s+2n—-k)—(n—k) >n—k,

and therefore X™ *|b; (X1,Y1) for all k. This proves that the exceptional divisor is also permitted.
Let us move now to the more complicated case, when a (Y;) # 0. Now we write F(!) in the
following form

n—1

FO = (Zi +a(M))" + ) b (X1, Y1) (X1 + (Y1) * (Z1 + a(11))",
k=0

for some b, (X1,Y1) € K[[X1,Y1]]. Hence the summand a (Y7)", which is a power series in K[[Y1]]
of order strictly greater than n, appears in the independent term.

But as F(1) comes from F after a quadratic transformation at the point (1 : 0 : 0) of the
exceptional divisor, there can be no monomials in K[[Y7]] in the independent term, which implies
clearly that b(Y7) cannot be 0.

Let us write a (Y1) = Y{u (Y1), b(Y1) = Y°v (Y1), for some wu,v units in K[[Y;]]. Then, as
previously, it must hold

n—1
ernu (Yl)n + Z by, (0’ Yl) erku (le)k Yls(nfk)lu (Yl)nflc =0,
k=0

which in particular implies rn > sn, that is, r > s.
Let us write 7 = r's + ¢ with t € {0, ...,s — 1} and 7' > 1. Then we can rewrite our ideal as

P = (Zl +YEXT (;Z%Z) , X1+ va(Y1)>

_ (Z1 + X7 e(Y1), Xy + va(Yl)) ,
or, alternatively
P=(Z,+ X19(X1,Y1), X1 +b(Y1)).
With this new form it must hold

F(l) = (Zl + Xlg(Xlayl))n +

n—1

+ Y ek (X1, Y1) (X0 +b(Y1))" ™ (Z1 + X1g(X1, Y1)*
k=0

We want to prove X" ¥|¢, (X1,Y7) for k = 0,...,n — 1. If this were not so, let ky be the
biggest index for which this does not happen. Let us write X?Y} the smaller monomial for the
lexicographic ordering appearing in cg, (X1,Y7). Mind that p < n — ky. Then the monomials in

XPY b (Y1) ke ZFo



cannot cancel with any others coming from the developments of the remaining summands. This
is so because, if k > ko the monomials in the k—th summand are in (Z;, X1)" and if k < kg the
monomials in the k—th summand have smaller exponent in Z;. Hence the monomial

+s(n—ko) /k
X{)Yf s(n O)ZIO
actually appears in F(1. As F(1) is the result of a quadratic transform in (1:0:0), we have
p>qt+sn—ky)+ky—n=q+(s—1)(n—ky) >qg+n—ky>n—ky,

which contradicts our assumption. This finishes the proof of the lemma.

Note that, from the previous arguments, a curve which is tangent to the exceptional divisor
can also be written as

P = (Z1+h(X1,Y1), X1 +b(Y1)),

where b (Y1) € K[[Y1]] and h (X1,Y1) € K[[X}]][Y1], with ord(b) = s > 2 and degy, (h) < s. This
will be our preferred form in what follows.

In order to prove the existence of a singular equimultiple curve in £(S) which is taken into
the permitted curve that is tangent to the exceptional divisor, we will begin by proving that we
can find a “amusing” parameter to work with in this situation.

Lemma.— In the situation of case (b.2), let us assume that, after the quadratic transform in the
direction (1 :0: 0) of the exceptional divisor, we have the following permitted curve in S(V:

P=(Zi+h(X,Y1),X1 +b(11)),

with ord(b) = s > 1 and h (X1,Y7) € K[[X1]][Y1] with degy, (h) < s.
Then there exists an isomorphism ¢ : K[[X,Y, Z]] — K[[X',Y’, Z']] which makes the fol-

lowing diagram commutative

K[[X,Y, Z]] K[[X’,Y’,Z’]]
7TM 7T'M
(1:0:0) (1:0:0)
K[[X1, Y1, Z1]] v K[[X!,Y!, 2]
with 1 given by
P (X)) = X
p(Y1) = Y/

(%) = Zi—h(X1,Y])

Proof.— Let us write
h(X1,Y1) = hi (X1,Y1) + ho (X1, Y1),

where the monomials of hy are precisely those X{"Yf with 1 + o > §, all the remaining ones
being in ho. Note that he € K[X1,Y1].
If ho = 0 then we get the result we look for with

p(X) = X'
p(Y) = Y ,
ot7) = 7 -xm (x5



If hy # 0 then the previous isomorphism ¢, together with

P (X)) = X
p(Y) = V!
P (Z1) = Zy—h (X1,Y])

makes the diagram commute. In this case, we would have the permitted curve
$(P) = (Z1 + ha (X1,Y{) , X1 + b(Y)))

in the equimultiple locus of the surface S(). The equation for SU), in {X}, Y7, Z!} can then be
written as

FO = (Z! 4+ hy (X5, YD) +

n—1
+ 3 b (X1, Y7) (XT+6(YD)" " (20 + ha (X, 7))
k=0
For the sake of simplicity, we will rename our variables as {X,Y, Z}, as no further changes of
variables are needed from this point onwards.

Assume (j,d) is the smallest exponent in ho(X,Y’) for the lexicographic ordering verifying
14+ j<d<s—1. Let us prove

X4tn=k=171p(X,Y), forall k = 0,...,n — 1.

STEP 1. Let us begin by the case k = n — 1; we want to prove X%|b,_1(X,Y).
The coeffcient of Z*~! in F!) must be

( 71L >h2+bn1(XaY)(X+b(Y))'

Let (a, B) be the minimal exponent appearing in b,_1(X,Y’) with respect to the lexicographic
ordering. Then («, 8+s) is the minimal exponent appering in b,,_1(X,Y)(X+b(Y")) and it cannot
cancel with any monomial in ks as degy (he) < s — 1. Hence (a, 8+ s,n — 1) € N (F) and,
being F(U the equation for a quadratic transform in (1 : 0 : 0), it must hold

a>f+s+(n—-1)—n=pF+s—-1>s—-12>d.

STEP 2.— Let us assume the result is true for k,k + 1,...,n — 1 and let us prove
X Ry (X, Y).

We fix now our attention in the coefficient of Z¥~1 in F(1), which is formed by the develope-
ment of

br_1(X,Y)(X +b(Y))" *HL

and also by monomials coming from the expression
(Z 4 ho)™ + (X +0)by_1 (Z+ o)™ L 4 oo+ (X 4 5)"Fby (Z + ho)F.

If we parallel the case above and note (a, ) the minimal exponent appearing in bg_1(X,Y")
for the lexicographic ordering, then the minimal exponent for by 1 (X + b)" "%+ must be (a, 8 +
(n — k4 1)s). And, furthermore, this exponent cannot be cancelled with any other from the
developement of the summands of the expression above. Let us see this with closer detail.



Clearly, it cannot cancel with any monomial from

() mcryy s

as all of their degrees with respect to Y are smaller than (s — 1)(n — k + 1).
Now, if @ < d+ (n — k)j there cannot be cancellation with monomials of

( T;__Tln ) bn—m(X + b)Y ™R (for m = 1,...,n — k),

as their orders with repect to X are greater or equal (by induction hypothesis) than
d+(m—-1j+jn—-m—-—k+1)=d+jn—k).

Hence (o, S+ (n —k+1)s,k—1) € N (F(l)) and, as before, it must then hold

a > B+m—k+1l)s+k—1—-n > (n—k+1)(s—1)
> (n—k+1)d = d+(n—-k)d
> d+ (n—k)j,

which is a contradiction. Hence X4t(»=%=1Di|p, (X, Y), for all k = 0,...,n — 1.
Now the independent term of F() is

n—1
F(X,Y,0) = h + Y be(X +b)"Fhb.
k=0

The first summand features the exponent (nj,nd,0), which must be in N (F (1)), as the order
with respect to X of any other monomial is, for some k € {0,...,n — 1} greater or equal than

d+(n+k—-1)j+kj=d+(n—1)j>nj+1>nj.

However, this monomial cannot appear in F(!) | as j <dand F (1) is the equation of a quadratic
transform in (1 : 0 : 0). This shows hy = 0 and finishes the proof of the lemma.
Remark.— After this lemma we can assume that, in our situation, Z; lies in both the exceptional
divisor and P. So, for finishing our case, we are given the surface S defined by

n—1
F=2"+) a(X,Y)ZF,
k=0

and its quadratic transform S() on the direction (1 : 0 : 0), defined by

n—1
FO =77+ 3 ol (X1, 1) 2L,
k=0
from which we know the following facts:

e The multiplicity of S and S(!) is the same.

e There is a curve P = (Z1, X1 + G(Y1)) € & (SW), with ord(G) > 2.

We have to prove that there is a curve @ € £(S) \ & (S) such that w%o:o)(Q) = P. This was
proved in our previous paper [4] in a characteristic—free way. In fact, the really difficult part in
positive characteristic is proving that we can assume P to have this particular form, and this has
been done in the previous lemma.

We give a brief outline of the proof: first one shows that it is enough to prove that one can
find a power series H (X1,Y7) verifying:



e ord(H) = ord(G) = X\ > 2.

e H is regular on Y7 of order A.

e There is a unit u (X1,Y7) such that
1

?H(Xlalel) =u(X1,Y7) (X1 +G(Y)).

Then one proves that this power series actually exists in a constructive way (in an ample
sense, of course): it consists simply in writing

X1+G(Y1) = Xl"‘zaiyli
>

HX,Y1) = ) (Z B X1Y{

E>XA \it+j=k

uX,Y) = Y| DD wxiy!

k>0 \i+j=k

and then imposing the third condition above. In this way it is straightforward seeing that one
can, in fact, construct H and u with the desired properties.

There are no great differences here with respect to the null characteristic proofs. For instance,
take P = (a : 8 : 7) a direction in the exceptional divisor with multiplicity . Then the quadratic
transform of S on (« : B : y) has, at most, multiplicity . This is plain from the very definition
of multiplicity.

So the hypothesis of (b.1) are filled only if the direction chosen is one of multiplicity 7.
Eventually, changing the variables we may consider that the point is (0 : 1: 0) (and F € K[X, Z)).

For proving that the quadratic transform cannot have permitted curves note that, in (b.2),
we have showed that, if a new permitted curve appears, so does the exceptional divisor (whether
F is the power of a linear form or not). But (Z,Y) cannot be a permitted curve, F(1) having
monomials in K[X, Z] other than Z".

It is also clear that the quadratic transform does not erase permitted curves either. If there is
a permitted curve we may take it to be (Z, X), after a change of variables which does not affect
(0:1:0). Clearly this curve cannot disappear from the equimultiple locus after a quadratic
transform on (0 : 1 : 0).

This finishes the proof of the theorem.
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