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Abstract

We know that all the rank one discrete valuations of k((X1, X2)), centered in the
ring k[[X1, X2]], come from the usual order function[2,3], i.e. there exists a finite
number of transformations such that we obtain a new field k((Y1, Y2)) where the
lifting of v is a monomial valuation given by v(Y1) = v(Y2) = 1.

In this work we generalize this result to the rank m discrete valuation of K =
k((X)), centered in R = k[[X]]. We prove that, if the dimension of v is n − m,
the maximum since [1], then there exists an inmediate extension L of K where the
valuation is monomial. Therefore we give an explicit construction of the residue field
of the valuation.
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1 Preliminaries

Remark 1 In this remark we remember some definitions and results given by
I. Kaplansky in [4].

Let K be a valued field, let v be the valuation.Let L be an extension of K and
v′ a valuation that extends v. We say that the extension K ⊆ L is immediate

if the values group and the residue field of v and v ′ are the same. We say that
a valued field K is maximal if it doesn’t admit proper immediate extensions.
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A well ordered set {ai} ⊂ K, without last element in K, is called pseudo-

convergent if

v(aj − ai) < v(ak − aj)

for all i < j < k. Easily we have that, if {ai} is pseudo-convergent, then
v(aj − ai) = v(ai+1 − ai), ∀i < j. So we can use the abbreviation ωi for
v(aj − ai), with j > i. Let us note that {ωi} is an increasing set of elements
of Γ.

An element a ∈ K is called limit of the pseudo-convergent set {ai} if v(a−ai) =
ωi for all i.

[4] prove the following results:

• If K ⊂ L is an immediate extension, then every element of L \K is a limit
of any pseudo-convergent subset of K without limit in K.

• A valued field K is maximal if and only if there exists a limit for all its
pseudo-convergent subsets.

In [5], Krull shown the existence of, at least, one maximal immediate extension
for all valued field. Therefore, if K̂ is the completion of K by the valuation
v and v̂ is the unique valuation of K̂ that extends v, then K ⊂ K̂ is an
immediate extension and K̂ is a maximal valued field.

Kaplansky shown the unicity of the maximal immediate extension of a valued
field K that satisfy a certain condition, that he calls hypothesis A. In the case
of zero characteristic this hypothesis A is empty.

Finally, [4] gives an useful structure theorem for all maximal valued field. If
∆ is a field and Γ an ordered abelian group, the set of all formal series

∑
ait

αi con ai ∈ ∆, αi ∈ Γ y {αi} well ordered,

is a field with the usual sum and times. We shall denote this field by ∆(tΓ).
In ∆(tΓ) we can consider the valuation νt given by

νt


∑

i≥1

ait
αi


 = α1 with a1 6= 0.

Krull shown in [5] that, with this valuation, ∆(tΓ) is a maximal field.

Theorem 2 (Kaplansky, 1942) Let K be a maximal valued field with values
group Γ and residue field ∆ that satisfies the hypothesis A. Then K is analyt-
ically isomorphic to the power series field ∆(tΓ).
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1.1 Notation and definitions.

Let K = k((X)) = k((X1, . . . , Xn)) be the quotient field of the formal power
series ring R = k[[X]] = k[[X1, . . . , Xn]].

Remark 31) We shall write all series f ∈ R as f =
∑
A∈Z

n
0
fAX

A, where, if

A = (a1, . . . , an), then XA means Xa1
1 · · ·Xan

n . We shall say

E(f) = {A ∈ Z
n
0 | fA 6= 0} .

2) In Zm we’ll consider the lexicographic order, it’ll be denoted by ≤lex. This
is a total order for the group structure.

3) Let 0 < m ≤ n be an integer and

L = {B1, . . . , Bn} ⊂ Z
m
0 \ {0}

such that L is a generator system of Zm. Each monomial XA of R has an
element of Zm

0 associated, that is called its L-degree, that is

degreeL(X
A) =

n∑

i=1

aiBi , A = (a1, . . . , an) .

Definition 4 Let 0 < m ≤ n be an integer and

L = {B1, . . . , Bn} ⊂ Z
m
0 \ {0}

such that L is a generator system of Zm. Let v : R → Zm ∪ {∞} be the
function such that v(0) = ∞ and

v(f) = min
≤lex

{
degreeL(X

A) | A ∈ E(f)
}
,

with f 6= 0. The extension of v to K|k, which values group is Zm, is a rank m
discrete valuation, called monomial valuation associated to L.

Throughout this work, let v be a rank m discrete valuation of K|k centered in
R. Let Rv, mv and Γ = Zm be the ring, the maximal ideal and the values group
of the valuation v, respectively. We’ll denote by ∆v = Rv/mv to the residue
field of v. Since [1] we know that the dimension of v (the transcendence degree
of k ⊂ ∆v) is lesser or equal than n−m. We shall suppose that the dimension
of v is the maximum, n−m.

So in this work valuation means rank m discrete valuation of K|k centered in
R and dimension n−m.

Remark 5 Let K̂ be a maximal immediate extension of K. Since [4] we can
suppose that K̂ is the completion of K with respect of v. Let v̂ the only exten-
sion of v to K̂. We know that there exists an analytic isomorphism of K̂ in
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∆v(t
Γ), so its restriction to the ring R gives an injective homomorphism

ϕ : R = k[[X]] → ∆v(t
Γ)

Xi 7→
∑
j≥1 ai,jt

αi,j

with ai,j ∈ ∆v y {αi,j} ⊂ Γ well ordered.

If we consider the extension of ϕ to the quotient field K and the valuation νt
of ∆v(t

Γ) previously defined, then v = νt ◦ ϕ.

The purpose of this work is to construct ϕ explicitly, in order to obtain a
parametric equation of v and, in consequence, a construction of the residue
field of v, as an extension of the field k.

Therefore we’ll prove that for all valuation v of K|k, there exists an immediate
extension K ⊂ L = k((Y)) such that the valuation that extends v is monomial.

In other words: Any valuation v comes from a monomial valuation. This result
generalizes the obtained in [2,3] for rank one discrete valuations of k((X1, X2)).

1.2 Monoidal Transformation and immediate extension.

Let v be a valuation of K|k. Let us consider the next monoidal transformation
in K:

k((X)) → L = k((Y))

Xi 7→ Yi if i 6= 2

X2 7→ Y2Y1

with v(X2) >lex v(X1). Then we have the following theorem.

Theorem 6 With these conditions, the extension K ⊂ L is immediate.

PROOF. Let us consider the rings R = k[[X]] and S = k[[Y]], and the diagram

R
� � ϕ

//
� _

��

∆v(t
Γ)

S
ψ

77
o

o
o

o
o

o
o

o
o

o
o

o
o

Where ψ is the natural extension of ϕ to L, i.e. ψ(Y2) = ϕ(X2)/ϕ(X1).

If ψ is injective, then v′ = νt ◦ ψ is a valuation of L that extends v and both
has the same values group Γ and the same residue field ∆v.
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So we can suppose, by contradiction, that ψ is not injective. Let p be the
implicit ideal ker(ψ) and L′ the quotient field of the ring

k[[Y]]

p
.

Clearly the restriction of ψ to L′ is injective and its composition with νt define
a valuation, let us put w1. So the extension K ⊂ L′ is immediate.

Let w2 be the valuation p–ádic of L. This is a discrete rank one valuation.

The composition of both valuations, let us put w, is a discrete rank m + 1
valuation of L|k whose residue field is ∆v. Then we have

rank(w) + dim(w) = n+ 1 > dim k[[Y]].

Since Abhyankar’s theorem ([1], Theorem 1, p. 330), we know

rank(w) + dim(w) ≤ dim k[[Y]],

so there is a contradiction.

Remark 7 Here we are used the existence of such injective homomorphism,
proved by Kaplansky [4]. Later we’ll give an explicit construction of ψ. There
isn’t circular reasoning.

The following example shows that the condition of maximal dimension of v is
necessary.

Example 8 Let R = C[[X1, X2, X3]] and K its quotient field. Let us consider
the injective homomorphism

ϕ : R → C(u)[[t]]

X1 7→ t

X2 7→ ut2

X3 7→ eut − 1.

The composition of ϕ (really its extension to the quotient fields) with the usual
order function νt of C(u)((t)) is a rank one discrete valuation of K, named v.
The dimension of v is 1, the transcendence degree of the extension C ⊂ C(u).
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If we make the monoidal transformation

R = C[[X1, X2, X3]] → S = C[[Y1, Y2, Y3]]

Xi 7→ Yi if i = 1, 3

X2 7→ Y2Y1

Then we have an homomorfism

ϕ : S → C(u)[[t]]

X1 7→ t

X2 7→ ut

X3 7→ eut − 1.

that is not injective.

2 Constructing ∆v.

2.1 Basis of a subgroup of Zm.

There are well known procedures to compute a basis of a subgroup Γ0 ⊂ Zm

knowing any set of generators. In this subsection we describe an algorithm
that will be very useful in order to prepare the valuation.

Let {A1, . . . , An} be the set of generators of Γ0 ⊂ Zm, with Ai >lex 0 for all
i. We can suppose, without lost of generality, that Ai ≤lex Aj ∀i < j. Let
A = (ai,j) ∈Mn×n be the matrix whose rows are the elements Ai.

We shall consider two transformations with the rows of the matrix A:

(1) Fi,j(q): To change the row i by itself plus q times the row j, with q ∈ Z.

(2) To interchange rows.

Clearly the group generated by the rows of the matrix A is equal to the group
generated by the rows of any transformation of A.

Remark 9 Algorithm. The the matrix A has the following echelon form

Let j be the first column different of 0 in A, let i be the first such that ai,j 6= 0.
Then we shall say that ai,j is a pivot.
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0

How Ai ≤lex Al ∀i < l, clearly ai,j ≤ al,j ∀i < l. Let us put al,j = qlai,j + rl, by
making the integer Euclidean division of al,j by ai,j.

We’ll apply the following procedure with the first step, that is perfectly ex-
portable to the other steps:

I) For each row l, with i < l ≤ n, we make the following transformation:
a) If rl 6= 0 we do Fl,i(−ql). The new row l, that we denote by Al again, is

such that Al <lex Ai and 0 < al,j < ai,j.
b) If rl = 0 there are two possible situations:

1) Al−qlAi >lex 0: In this case we make too the transformation Fl,i(−ql).
The new row l is such that Al <lex Ai and al,j = 0. So, after a
reordering Al raises a step.

2) Al − qlAi ≤lex 0: Then we make the change
Fl,i(1 − ql). The new row l, that we denote Al again, is such that

Al ≤lex Ai and ml,j = mi,j. Let us remark that if ql = 1 then Al = Ai,
because we have suppose at begin that Ai ≤lex Al.

II) After these transformations we reorder the rows. If every row of the first
step of the matrix are equal, then we raise a step and we begin with the
procedure.In other case, we apply again this algorithm.

Clearly we are doing the Euclidean algorithm in order to compute the maximal
common divisor of the elements {ai,j, . . . , an,j}. Let pj be the maximal common
divisor. By a finite number of transformations we obtain a transformed matrix,
that we denote again by A, such that the pivot is equal to pj and the last one
divides all al,j with l ≥ i.

We have just arrived to situation I.b), so, by a finite number of transforma-
tions, necessarily we must obtain a new matrix A where all the rows down the
pivot ai,j = pj are equals to Ai.

Hence, by applying this algorithm for each step of the matrix, we obtain a ma-
trix B with only con s different rows Bi1 , . . . , Bis whose pivots are pj1, . . . , pjs.
Clearly Γ0 is isomorphic to pj1Z × · · · × pjsZ and {Bi1, . . . , Bis} is a basis of
Γ0.

The algorithm described in this section allows us to prove the following lemma,
that we are going to use frequently for preparing our valuation conveniently.

Lemma 10 With the usual conditions over K = k((X)) and v, rank m dis-
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crete valuation, if Γ0 is the subgroup generated by the values of the elements
Xi, the we can find, by a finite number of monoidal transformations and in-
terchanges of variables, an immediate extension L = k((Y)) of K such that
each Yi has the value in a basis {B1, . . . , Bs} of Γ0.

PROOF. We have to apply the precedent algorithm to the matrix of the
values v(Xi). Where Fl,i(−ql) means “to apply ql monoidal transformations
such that Xl 7→ YlYi”, and reorder rows means “to reorder variables according
to its values”.

2.2 Preparing v.

As usually, we begin with a rank m ≤ n discrete valuation v of K|k, centered
in the ring R = k[[X]]. Let Γ = Zm, Rv and mv be the values group, the ring
and the maximal ideal of the valuation. v, respectively. We shall denote, as
usual, by ∆v to the residue field of the valuation.

We’ll suppose that the extension k ⊂ ∆v is transcendent pure of degree
dim v = n−m.

First, we apply the lemma 10 to obtain an immediate extension L = k((Y))
of K such that the set of values of the elements Yi is a basis {B1, . . . , Bs} of
the subgroup Γ0 generated by the values of the elements Xi.

By convenience we reorder the elements Yi in such way that the first s elements
takes all the values of the basis (i.e. v(Yi) = Bi for i = 1, . . . , s).

Remark 11 Let A ∈ Γ0 be such that A = r1B1 + . . . + rsBs, then we shall
denote by RA = (r1, . . . , rs, 0, . . . , 0) to the n–uple such that v(YRA) = A.

2.3 The first transcendental residue.

Our purpose is to give an explicit description of the injective homomorphism
ψ : k[[Y]] → ∆v(t

Γ), such that v = νt ◦ ψ. In order not to complicate the
exposition of this construction, we are supposing that all the residues are in
k or they are transcendental over the ground field. This condition seems too
strong, but after the proof of theorem 16 we’ll explain why this situation is
really close to the general one.

1) For the first elements we put

ψ(Yi) = tBi i = 1, . . . , s.
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2) Let us take Ys+1 the first element whose value is a linear combination of
the elements Bi (in fact it must be equal to some Bi). Let us suppose that
v(Ys+1) = Bs+1,1, then we have two possibilities:

a) For all α ∈ k, v(Ys+1+αY
RBs+1,1 ) = Bs+1,1. This fact means that the residue

of Ys+1/Y
RBs+1,1 in ∆v is transcendental over k. Let us put

us+1 =
Ys+1

Y
RBs+1,1

+ mv

and ψ(Ys+1) = us+1t
Bs+1,1 .

b) There exists α ∈ k such that v(Ys+1 + αY
RBs+1,1 ) >lex Bs+1,1. So the

residue of Ys+1/Y
RBs+1,1 in ∆v is in k. Let us put αs+1,1 = α and v(Ys+1 +

αs+1,1Y
RBs+1,1 ) = Bs+1,2 > Bs+1,1. There are two possibilities again:

i) The new value Bs+1,2 /∈ Γ0. In this case, we make the change Zs+1 =
Ys+1 + Y

RBs+1,1 , Zi = Yi ∀i 6= s + 1 and go back to the beginning of the
procedure by preparing the new valuation of k((Z)) with the lemma 10.

ii) The value Bs+1,2 ∈ Γ0. If there exists αs+1,2 such that

v
(
Ys+1 + αs+1,1Y

RBs+1,1 + αs+1,2Y
RBs+1,2

)
= Bs+1,3 >lex Bs+1,2,

then we ask again if Bs+1,3 ∈ Γ0. In the affirmative case, if there exists
αs+1,3 ∈ k such that

v
(
Ys+1 + αs+1,1Y

RBs+1,1 + αs+1,2Y
RBs+1,2 + αs+1,3Y

RBs+1,3

)
=

Bs+1,4 >lex Bs+1,3,

we go back to the beginning of the procedure.
We continue this procedure until we find a value Bs+1,l /∈ Γ0. If we

cannot, there does not exist αs+1,l ∈ k such that

v

(
Ys+1 +

l∑

k=1

αs+1,kY
RBs+1,k

)
= Bs+1,l+1 > Bs+1,l.

In the first case we make the change

Zs+1 = Ys+1 +
l−1∑

k=1

αs+1,kY
RBs+1,k , Zi = Xi ∀i 6= s+ 1

and move to the lemma 10. In the second case we have that the residue

us+1 =
Ys+1 +

∑l−1
k=1 αs+1,kY

RBs+1,k

Y
RBs+1,l

+ mv

is transcendental over k. In this case we put

ψ(Ys+1) =
l−1∑

k=1

αs+1,kt
Bs+1,k + us+1t

Bs+1,l.
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We have to prove that this procedure ends up finding a new value that it is
not in Γ or a transcendental residue.

Lemma 12 The situation described in 2.b.i) only occurs a finite number of
times.

PROOF. There are two possible situations to find an element of value B /∈
Γ0:

1) The value B is not a rational linear combination of the elements of Γ0. In
this case, the rank of the new subgroup of Zm increases by 1. Trivially this
fact only occurs a finite number of times.

2) The new value B is a non integer rational linear combination of the ele-
ments of the basis of Γ0. Let {p1, . . . , ps} be the pivots that appears in the
construction of the basis of Γ0, let {q1, . . . , qs} be the ones of the new sub-
group, Γ1. As Γ0 ⊂ Γ1, then qi ≤ pi ∀i and, at least, one inequality is strict.
As the pivotes are greater or equal than 1, this only occurs a finite number of
times.

Remark 13 Let us suppose that we have a pseudo convergent set {fj} of
elements of a valued field K, with value group Zm with lexicographic order.
The set of values {ωj} of the elements fj is a strictly increasing sequence of
elements of the group Zm. Let us suppose that the set {ωj} is bounded. Then,
from an index j sufficiently big, we have

ωj = (a1, . . . , al, al+1,j, . . . , am,j),

in such way that the first l coordinates of the values ωj are stabilized. Let us
suppose that l is the greatest integer between 1 and m such that this fact occurs.

Let f be a limit of {fj} and ω = v(f) its value. Then, if ω = (b1, . . . , bn),
as ω >lex ωj for all j, then there exists an l0 ≤ l such that bi = ai for all
i = 1, . . . , l0 − 1 and bl0 > al0 .

Lemma 14 The procedure described in the situation 2.b.ii) finds a value that
is not in Γ0 or a transcendental residue over k.

PROOF. If the procedure is not finite, then we have a set of elements {fj}j≥1

such that

fj = Ys+1 +
j−1∑

l=1

αs+1,lY
RBs+1,l .

So v(fj+1) = Bs+1,j+1 >lex v(fj) = Bs+1,j for all j.
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Therefore, if i < j < k, we have

v(fj − fi) = Bs+1,i <lex v(fk − fj) = Bs+1,j,

so {fj} is a pseudo-convergent set.

Let us suppose that the set of values {Bs+1,j} is bounded. Like in the remark
13, let us suppose that, since an index j sufficiently great, the first l coordinates
of the values are stabilized, where l is the greatest integer between 1 and m
such that this fact occurs. Let us put

v(fj) = (a1, . . . , al, al+1,j, . . . , am,j).

Again by remark 13, we know that any limit of {fj} is such that its value is
something like

(a1, . . . , ak, bk+1, . . . , bm),

with k < l and bk+1 > ak+1. Let us take the series

Ys+1 +
∞∑

j=1

αs+1,jY
RBs+1,j .

As limit, by convenience we put

g1 =
∞∑

j=1

αs+1,jY
RBs+1,j

and v(Ys+1 + g1) = B1
s+1,1.

If B1
s+1,1 /∈ Γ0, the we have finished. In other case, if there exists α1

s+1,1 such
that

v
(
Ys+1 + g1 + α1

s+1,1Y
R

B1
s+1,1

)
= B1

s+1,2 >lex B
1
s+1,1,

then we continue with our procedure. If it is infinite again and the values
contained are bounded, then we shall have a pseudo-convergent set with limit

Ys+1 + g1 +
∞∑

j=1

α1
s+1,jY

R
B1

s+1,j .

Again by convenience we put

g2 =
∞∑

j=1

α1
s+1,jY

R
B1

s+1,j

and v(Ys+1 + g1 + g2) = B2
s+1,1 >lex B

1
s+1,1.

If this procedure does not find an element not in Γ0 or a transcendental residue,
we have a series

Ys+1 + g1 + g2 + g3 + · · ·

11



such that the set of the partial sums



Ys+1 +

j∑

i=1

gi




j≥1

is pseudo-convergent.

If the values of this set are bounded again, then, from one j sufficiently great,
the first k coordinates of each value are stabilized, where k is the greatest
integer between 1 and m such that this fact occurs. As all the values of this
set are greater than the first limit we have found, then it must be k < l.

Therefore, if we don’t find a transcendental residue, after an infinite proce-
dure of calculation of limits of pseudo-convergent sets, the values, if they are
bounded, become stable in lesser and lesser coordinates.

So this procedure must end finding an element that is not in Γ0 or a new
transcendental residue. The opposite fact is equivalent to construct a series

f = Ys+1 + g(Y1, . . . , Ys) ∈ k((Y))

such that the set of values of the partial sums is not a bounded strictky
increasing sequence. This means that v(f) = ∞. So ψ(f) = 0, but this is a
contradiction because ψ is injective.

So, at the end of this procedure, we shall have a series f = Ys+1+g(Y1, . . . , Ys) ∈
k((Y)) such that v(f) = Bs+1 and, either Bs+1 /∈ Γ0, or there does not exist
α such that v(f + αYRBs+1 ) >lex Bs+1. In this last case we take

us+1 =
f

YRBs+1

+ mv

and put

ψ(Ys+1) = g(tB1, . . . , tBs) + us+1t
Bs+1 .

2.4 Construction of ∆v.

We can suppose that we have an immediate extension L = k((Y)) of K such
that:

1) {B1, . . . , Bm} is a basis of Γ = Zm. This means that the situation 2.b.i) is
not going to appear any more and all the values that we find are integer linear
combination of the basis.
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2) We have applied the described procedure with the first k > m elements Yi
obtaining:

ψ(Yi) = tBi , i = 1, . . . , m

ψ(Yj) =
∑
l≥1 αj,lt

Bj,l + ujt
Bj , j = m + 1, . . . , k

such that Bj >lex Bj,l >lex Bj,l−1 y {αj,l} ⊂ ∆j−1 = k(um+1, . . . , uj−1) ⊂ ∆v.

Our purpose is to describe the procedure with the variable Yk+1, that is anal-
ogous to the described previously to find the first transcendental residue.

Let v(Yk+1) = Bk+1,1, there exists αk+1,1 ∈ ∆k such that the value v(Yk+1 +

αk+1,1Y
RBk+1,1 ) = Bk+1,2 >lex Bk+1,1?

1) If the answer is affirmative, then we pore the question for the new element
Yk+1 + αk+1,1Y

RBk+1,1 .

2) If it is negative then we put

ψ(Yk+1) = uk+1t
Bk+1,1

and go to the following variable.

Lemma 15 This procedure ends finding a new transcendental residue, even-
tually after an infinite number of calculations.

PROOF. The reasoning is the same that in lemma 14, if there is not such
transcendental residue, then we can construct a pseudo-convergent set that
has a limit

f = Yk+1 + g(Y1, . . . , Ym) ∈ k((Y)),

of value ∞. This implies that ψ(f) = 0, and this is a contradiction

With this procedure we prove the following theorem:

Theorem 16 The residue field of v is k(um+1, . . . , un).

PROOF. The constructions described in this work permit us to find one
immediate extension L = k((Y)) of K such that the valuation that extends v
to the field L is defined by the composition of

ψ : k((Y)) → k(um+1, . . . , un)(t
Γ)

Yi 7→ tBi , i = 1, . . . , m

Yj 7→
∑
k≥1 αj,kt

Bj,k + ujt
Bj , j = m + 1, . . . , n

13



with the valuation νt of k(um+1, . . . , un)(t
Γ). Clearly the residue field of this

valuation is k(um+1, . . . , un).

Remark 17 The general case: considering algebraic residues. If we find non-
trivial algebraic residues, then the procedure does not change, and we obtain
the residue field

∆v = k(ζm+1, . . . , ζn),

where ζi is a collection, eventually infinite, of algebraic residues {αi,k} and
one transcendental residue ui.

All of these algebraic extensions are finite; in other case we can do the same
as the proof of theorem 6 to obtain a valuation with dimension greater than
n−m.

It could be another problem in the general case, because in fact we are con-
structing a representant field of ∆v as an intermediate extension of k ⊂
σ(∆v) ⊂ K, where σ is a section of the natural homomorphism Rv → ∆v.
As the rings of power series are completes, we can apply Hensel’s lemma to
know that we can find an algebraic representant α ∈ K for every algebraic
residue α+ mv.

3 Monomial valuations.

Althought the number of operations to calculate ψ explicitly with the previous
procedure is infinite, the number of monoidal transformations, coordinates
changes and interchanges of variables that transform K in L is finite, because
these only appear when we find a value B /∈ Γ0 and this fact occurs a finite
number of times. Following the trace of these transformations we obtain a map
ϕ : K → ∆v(t

Γ) that is the restriction of ψ and parametrizes v. In a similar
way we can obtain some representatives of every residue ui depending on X.

Finally we give a theorem that generalizes the results obtained in [2,3] for rank
one discrete valuations of k((X1, X2)) centered in k[[X1, X2]].

Theorem 18 For all rank m discrete valuation v of K|k, with dimension
n −m and centered in R, there exists an immediate extension L = k((Z)) of
K such that the lifting of v to L is monomial.

PROOF. In fact, by means of the previous procedure we obtain an immediate
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extension k((Y)) of K such that the lifting of v is v = νt ◦ ψ, with

ψ : k((Y)) → k(um+1, . . . , un)(t
Γ)

Yi 7→ tBi , i = 1, . . . , m

Yj 7→
∑
k≥1 αj,kt

Bj,k + ujt
Bj , j = m+ 1, . . . , n.

This valuation is not monomial, but if we make the change

k((Y)) → k((Z))

Yi 7→ Zi, i = 1, . . . , m

Yj 7→ Zj −
∑
k≥1 αj,kZ

RBj,k , j = m+ 1, . . . , n,

then the natural extension of ψ to k((Z)) is

φ : k((Z)) → k(um+1, . . . , un)(t
Γ)

Yi 7→ tBi , i = 1, . . . , m

Yj 7→ ujt
Bj , j = m+ 1, . . . , n

and the valuation v = νt ◦ φ is monomial.

Remark 19 In the general case, considering algebraic residues, we obtain an
inmediate extension L = k′((Z)), where k′ is an extension of k contained in
σ(∆v). The lifting of v in L is a monomial valuation.

Example 20 Let R = k[[X1, X2, X3, X4]] be the power series ring, with k =
Z/Z5. Let K be the quotient field. Let us consider the series W1 = X4 −∑
i≥1X

3i
3 and W2 = X2 −

∑
i≥1X

i
1. Let us consider the following valuations:

v1: (W1)–adic valuation of K,

v2: (W2)–adic valuation of K/(W1) and

v3: the monomial valuation of K/(W1,W2) defined by the values v3(X1) =
v3(X3) = 1.

Finally, let v be the composite valuation v = v3 ◦ v2 ◦ v1. It is a rank 3 discrete
valuation of K|k, such that:

v(X1) = v(X3) = (0, 0, 1)

v(W2) = (0, 1, 0)

v(W1) = (1, 0, 0),
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wherefrom

v(X2) = v(W2 +
∑
i≥1X

i
1) = (0, 0, 1)

v(X4) = v(W1 +
∑
i≥1X

3i
3 ) = (0, 0, 3).

So the values of the variables generate the subgroup Γ0 = {0}×{0}×Z. From
lemma 10 we know that the transformation X4 7→ Y4Y

2
1 takes K in to an

immediate extension L = k((Y1, Y2, Y3, Y4)), such that v(Yi) = (0, 0, 1), i =
1, 2, 3, 4. We shall apply the given procedure with this example to obtain a
parametrization, ψ, of v.

Let us put ψ(Y1) = t(0,0,1). We shall begin with the variable Y2, as v(Y2) =
(0, 0, 1), and we ask if there exists α ∈ k such that v(Y2 + αY1) >lex (0, 0, 1).
By the construction of v, we know that v(Y2−Y1) = v(X2−X1) = (0, 0, 2) >lex

(0, 0, 1). Following the procedure, we find that

v

(
Y2 −

l∑

i=1

iY i
1

)
= (0, 0, l + 1) >lex (0, 0, l).

So we have a pseudo-convergent set {fl}, with fl = Y2 −
∑l
i=1 iY

i
1 . A limit of

this set is

f∞ = Y2 −
∑

i≥1

iY i
1 .

As v(f∞) = v(W2) = (0, 1, 0) /∈ Γ0, we put

ψ(Y2) =
∑

i≥1

it(0,0,i) + t(0,1,0).

We continue with Y3, now Γ0 = {0} × Z × Z. Since it does not exist α ∈ k
such that v(Y3 + αY1) >lex (0, 0, 1), we put

ψ(Y3) = u3t
(0,0,1).

Let ∆3 = k(u3), with u3 = Y3/Y1 + mv. Let us go to the variable Y4 = X4/X
2
1 ,

v(Y4) = (0, 0, 1).By the construction of v, we know that

v
(
Y4 − u3

3Y1

)
= v

(
X4 −X3

3

X2
1

)
= (0, 0, 4) >lex (0, 0, 1).

Following the procedure we have

v

(
Y4 −

l∑

i=1

u3i
3 Y

3i−2
1

)
= v

(
X4 −

∑l
i=1X

3i
3

X2
1

)
= (0, 0, 3i+ 1).

Wherefrom we come to have a pseudo-convergent set {gl}, with gl = Y4 −
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∑l
i=1 u

3i
3 Y

3i−2
1 . A limit of this set is

g∞ = Y4 −
∑

i≥1

u3i
3 Y

3i−2
1

and v(g∞) = v(W1/X
2
1 ) = (1, 0,−2) /∈ Γ0. We put

ψ(Y4) =
∑

i≥1

u3i
3 t

(0,0,3i−2) + t(1,0,−2).

Therefore we have ∆v = k(X3/X1 + mv) and





ψ(X1) = t(0,0,1)

ψ(X2) =
∑
i≥1 it

(0,0,i) + t(0,1,0)

ψ(X3) = u3t
(0,0,1)

ψ(X4) =
∑
i≥1 u

3i
3 t

(0,0,3i) + t(1,0,0).

This way, making the substitution X1 = Z1, X2 = Z2 +
∑
iZi

1, X3 = Z3 y
X4 = Z4 +

∑
Z3i

3 , we have an immediate extension M = k((Z1, Z2, Z3, Z4)) of
K. The valuation that extends v to M is the monomial valuation defined by
v(Z1) = v(Z3) = (0, 0, 1), v(Z2) = (0, 1, 0) and v(Z4) = (1, 0, 0)
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anillo de series formales en dos variables, Actas X Jornadas Hispano-Lusas

(Murcia), vol. II, 1985, pp. 1–10.

[4] I. Kaplansky, Maximald fields with valuations, Duke Math. J. 9 (1942), 303–
321.

[5] W. Krull, Algerneine bewertungstheorie, J. Reine Angew. Math. 167 (1931),
160–196.

17


