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EXPLICIT CONSTRUCTIONS IN DISCRETE VALUATIONS

MIGUEL ANGEL OLALLA ACOSTA

ABSTRACT. In this paper we give an explicit construction of parametric equa-
tions of a discrete valuation. This amounts to find a parameter and a field
of coefficients. We devote section 1 to the construction of the parameter, an
element of value 1. The field of coefficients is the residue field of the valua-
tion, explicitly constructed in section 2. At the end of this section we give the
parametric equations.

TERMINOLOGY AND PRELIMINARIES

Let k be an algebraically closed field of characteristic 0, R,, = k[X1,...,X,],
M, = (X1,...,X,) the maximal ideal and K,, = k((X1,...,X,)) the quotient
field. Let v be a rank-one discrete valuation of K,|k, R, the valuation ring, m,
the maximal ideal and A, the residual field of v. The center of v in R, is m, N
R,,, throughout this paper “discrete valuation of K, |k” means “rank-one discrete
valuation of K, |k whose center in R,, be the maximal ideal M,”. The dimension
of v is the transcendence degree of A, over k. We shall suppose that the group of
vis Z.

Let I?n be the completion of K, with respect to v, U the extension of v to
K,, Rs, ms and Ay the ring, maximal ideal and the residual field of 5. We know
that A, and Az are isomorphic. Let o : A3 — Rz be a k—section of the natural
homomorphism R; — Az, 8 € R; an element of value 1 and ¢ an indeterminate.
We consider the k—isomorphism

®=d,9:A[t] = Ry

given by

® (Z Otiti) = Z U(ai)oi,
and denote also by ® its extension to the quotient fields; we have a k—isomorphism
&~ which composed with the order function on Ag((t)) gives the valuation 4. This
is the situation we shall consider throughout all this paper, and we’ll freely use it
without new explicit references.
In this paper we shall use two basic transformations to construct an element of
value 1 and the residual field:

1. monoidal transformation:

KX, ..., Xa] = E[Y,...,Y]
Xi » Y
Xy = 115
X » Y,i=3,...,n.

[
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2. coordinates change:

k[X4,...,X,] — L[Y,...,Y,]
X1 = Yi
Xi » Yi+ob)Y1,i=2,...,n,
with L C 0(Ay) is an extension field of k.

In both transformations we can see the next facts:

1. The transformations are one to one: In the case of the monoidal transforma-
tions this property is well known. In the other case it’s a consequence of [5]
(corollary 2, page 137).

2. The new variables {Y7,...,Y,} are formally independent over k or L: This
is a straight consequence of the previous property.

3. The new rings k[Y1,...,Y,] and L[Y1,...,Y,] are included in Rj, so we can

use the extension v of v to extend v to a discrete valuation v’ of k((Y1,...,Y))
or L((Y1,...,Ys)), the residual field of v’ is Az.

Throughout this paper transformation means monoidal transformation, coordi-
nates changes or a finite composition of these.

1. CONSTRUCTION OF AN ELEMENT OF VALUE 1

In this section we shall give an effective method to construct an element of value
1 (the parameter of parametric equations).

Lemma 1.1. Let a; = v(X;) for alli=1,... ,n. By a finite number of monoidal
transformations we can extend v to a new valuation vi of k((Y1,...,Yn)) such that
v1(Y;) = v1 (Y1) for all i.

Proof. We can suppose that v(X;) = a3 = min{e;|1 < i < n} and consider two
steps in the algorithm:

Step 1.- If exists n; € Z such that a; = n;a; for all i = 2,... ,n, then for each
i we apply n; — 1 monoidal transformations like

K[X1,...,Xn] = k[Yi,...,Y]
X1

A £l
Xy = Y
X; = Y, j#

Trivially v(Y;) =y for alli =1,... ,n.

Step 2.- If exists 4, with 2 < 4 < n, such that v(X;) = a; doesn’t divide to
v(X;) = a; (we can suppose that 4 = 2) then as = gay + r. So we apply ¢ times
the monoidal transformation

E[X1,...,Xa] = K[Vi,...,Y]
X1 » 7
Xo = VY
X; = Y;,i=3,...,n
to obtain a new ring k[Y1,...,Y,] where ¥(Y2) = r > 0 and is the variable of

minimum value.

As the values of the variables are greater than zero, in a finite number of steps 2
we come to the situation of step 1. In fact, this algorithm is equivalent to “Euclidean
algorithm” to compute the greatest common divisor of ay, ... ,ay,.

O
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Theorem 1.2. We can construct an element of value 1 applying a finite number
of monoidal transformations and coordinates changes.

Proof. We can suppose that v(X;) = v(X;) = aforalli =2,... ,n by the previous
lemma. We can proof that there exists b; € Az for each ¢ = 2,...,n such that
v(X; —o(b;)X1) > a: We can take

(®o0) ™ (Xi) =D aiit! = wi(t), aij € Ag, aia #0,

jza

SO bz' = aia/aij.
Step 1.- We apply the coordinate change

K[X1,...,Xa] = L[Vi,...,Y]
Xi » 1
X, & Yi+0(bz')Y1,i=2,...,n.

With this transformation the new variables have different values.

Step 2.- We apply lemma 1.1 to even the values of variables and go to step
1. In any case, the minimum value of the variables don’t increase, because this is
equivalent to find the greater common divisor of the values of the variables, and
the first variable does not change.

Eventually we obtain an element of value 1, then we’ve finished.

We have to show that the algorithm produce an element of value one in a finite
number of transformations. The only way to enter in an infinite process is that, in
the step 2, the minimum value of the variables doesn’t decrease. This means that,
in the step 1, the value of the first variable ever divides to the values of the news
variables.

The composition of steps 1 and 2 is the transformation

E[X1,...,Xn] — L[Y,....Y,]
X1 » Y
Xi = Yi+od)Y™, i=2,...,n.
If we use the steps 1 and 2 infinitely, we have the infinite sequence of transfor-
mations
E[X1,...,X,] — L[Y,...,Y,]
Xl = le’j .
X; & Y;’j +Z‘l7c:1 U(bi’k)Yij’k, 1=2,...,n.

Then we have an infinite sequence of variables

iy = Xi
Y;"j = X1 _Z?czl O'(bi’k)lez’k, i:2,... , N,
with 9(Y; ;) > v(Y;;-1) for all 4, j. So any sequence of partial sums of the series
X1 — Za(bi,k)X{n"”“, Vi=2,...,n.
k=1

have increasing values. Then these series converge to zero in Ry, so
oo
ik .
X1= E U(bi,k)Xl ,VZ—2,...,’I’L.
k=1
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Let f(X1,...,X,) € K,, then

o(f) =7 (f (Xl,za(bg,k)XInz’k,.. . ,Za(bn,k)le”’k>> =m -U(Xl).
k=1 k=1

In this situation, the values group of v is v(X1) - Z (proof in [2]) but we suppose at
preliminaries that the group is Z, so v(X1) = 1. O

Example 1.3. Let us consider the embedding

U (Cl[Xl,XQ,Xg]] — (C'[t,T2,T3]]
X1 & 2
Xy & T2t4 =+ T2t6
X3 = T2t2 + T3t5

with ¢, T and T3 variables over C. We are going to denote ¥ to its extension to
the quotient fields. The composition of this injective homomorphism with the order
function in ¢ gives a discrete valuation of C((X7, X2, X3))|C, v = v, 0 ¥. If we apply
the procedure given in this section, then we construct the next element of value 1:

X3 - O'(bz)Xl
X2 ’

where by € A such that ¥(o(bs)) = To.

2. CONSTRUCTION OF THE RESIDUAL FIELD

In this section we give a finite procedure to construct the residual field A, of a
discrete valuation of K|k, like a transcendental extension of k. In fact, we shall
extend the valuation v to other valuation v’ such that A, = A,. We want v' to be
“as close as possible” to an order function.

Remark 2.1. Preliminary transformation over v.

1) We can suppose that v(X;) =aforalli=1,... ,n by lemma 1.1

2) In this situation v(X2/X;) =0, s0 0 # (X2/X1) +m, € A,. If this residue is in
k then exists as; € k such that

Xo
fl +m, = a2 +m,,
SO
X2 = X2—anXy
Xl 21 — Xl € my,
and then

So we have v(X2 —a21X1) = a1 > a. If a divides to a; then a3 = ria with ry > 2

and
(Xz - a21X1)
v 2222 —o.
Xt
If the residue of this element is too in k, then exist as,, € k such that v(Xs —
a1 X1 — G2, X{') = a2 > a;. If a divides to as then ay = rya with 75 > ry and
we can repeat this operation.
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3) The previous procedure is finite. If it doesn’t stop we can construct the series
o
XQ — Z GQjX{
i=1

such that the sequence of partial sums has increasing values. So this series is zero
in contradiction with X; and X, are formally independent variables.
4) We can apply this procedure to all the variables X; j = 2,... ,n, then we have
the transformations:

le = Xl,

83
Y} =Xj —ZaﬁX{, ]22, ,n,
i=1
such that, in the ring k[Y7,...,Y},], occurs one of the next two situations:
a) v(Y;) = v(¥1) and the residue of Y;/Y; is not in k, or
b) v(Y;) # v(Y1) and v(Y7) does not divide to v(Y}).
In the case a), we make the transformation
s—1
Z; =Y, —Zajiyfa J#1,
i=1
with s such that Z;/Y} is the first residue which is not in k, as in the previous
procedure.
In the case b) we can make the transformation

s—1
Zy=Y; =Y aiYi, j#1,
i=1
with s such that v(Z;) is the first which v(Y7) doesn’t divide to v(Y}).

In any case, these transformations are the composition of monoidal transfor-
mations and coordinates changes. After these transformations we make a finite
number of monoidal transformations to even the value of the variables. The new
value is minor than the old (v(X7)).

Anyway this procedure stops, because the value of the variables are major or
equal than 1.

5) Then we can suppose that v is a discrete valuation of K,|k such that v(X;) =
v(X1) = a and the residues X;/X; + m, are not in &k for all i = 2,... ,n. If we are
not in this situation then we apply the previous procedure to do it.

The proof of the next lemma is straightforward from ([2], theorem 2.4):

Lemma 2.2. Let v be a discrete valuation of K,|k. If v is such that v(f,;) = ra
for all form f. of degree r respect the usual degree, then the values group of v is
a-7.

In the case of two variables we have the next

Theorem 2.3. In the case n = 2, the extension of the valuation v to the quo-
tient field of the ring constructed by the procedure of remark 2.1 is the usual order
function.

Proof. After a finite number of transformations we are in the situation of the end
of remark 2.1, we note v to the extension to simplify. Let o : Az — Ry a k—section
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of Ry — Az, uz = 0(X2/X1 + my), h # 0 a form of degree r and v = X — u2Xy.
By the construction of us we know that v(y) > a. Then

h(X1,X5) = h(X1,u2 X1 + ) = X{Th(1,u2) + 7/,

where «' is such that v(y') > ra (by the Newton’s binomial). Like us ¢ k, then us
is transcendental over k, so h(1,us) # 0 and v(h) = ra. By the previous lemma,
the values group of v is a- Z, so a = 1 and v is the usual order function. O

Remark 2.4. We are going to construct the residual field of v as an extension
of k. To do it we are going to survey all the variables searching those residues
which generate the extension. Then we are going to move between Rz and Aj; by
the k—section o and the natural homomorphism A; — Rz. In fact we are going
to construct the k— section o step by step. In this sense we have to do the next
remarks:

1) Let us consider the diagram

R; g As
\ "4

F Z g
\ "4

k id k

where F and ' are subfields of Ry and Ag respectively. Let w € Ry an element
such that ¥(w) = 0, the question is: if w+my is transcendental over I, is o(w + my)
transcendental over F? What happen in the algebraic case?

Then we suppose that w 4+ my is transcendental over F'. Let f(X) € F[X] be a
non-zero polynomial. Let us put

n
F(X) =) o(@)X’, a;€F.
i=0
Then
n . n .
flow+mg)) =Y oa)o(w+ms) =0 (Z a;(w + ma)’) #0
i=0 =0
because w + my is transcendental over F'. So we’ve proof that o(w + my) is trans-

cendental over I if w + mgz is transcendental over ¥
2) In the algebraic case let us consider the next diagram:
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R; As
A

F i g
X "4

k id k

Let a4+ mz € A be an algebraic element over F', with v(a) = 0 (i.e. a+ mg # 0).
Let
FX) =X"+BX™ "+ + Bm € F[X]
be its minimal polynomial over . Let us take the polynomial
fX)=X"+uX™ ! +-- + by, € FIX], with b; = o (3:).

By the Hensel’s Lemma ([5], corollary 1, page 279) we know that exists a € Ry
such that a is a simple root of f(X) y ¢(a) = a + mz. As po = id, f(X) is the
minimal polynomial of a, so we c}z%n extend o : F' [« X mz] — Fla]. Then we have

v )
A

F (a +mg)

Let us consider the set
Q = {(F1,01)|F1 DF and oy extends o}
ordered by the next way
(F1,01) < (F2,02) <= Fy CFy and ogr, = 01.

By Zorn’s lemma there exists a maximal element (L,c') € Q, and again by Hensel’s
lemma ([5], corollary 2, page 280) we have ¢(LL) = A3 such away. So we can extend
o to a k—section ¢’ of ¢ in such way that a = ¢'(a + mg) is an algebraic element
over F.

3) In the next remarks we are going to give an explicit construction of the residual
field of v as a subfield of Rz. The points 1) and 2) of these remark are useful to do
it, because if w + mz € Az, ¥(w) = 0, is a transcendental (resp. algebraic) element
over ', exists a k—section of ¢ which extends o and o(w + mgy) is transcendental
(resp. algebraic) over F.
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/

R; g Ay
[
A
g
F F
[

k ~—— &k

Remark 2.5. Let us go to the general case, suppose that n > 2 and we have
applied the procedure of remark 2.1 to construct a discrete valuation of K, |k such
that

a) The value of the variables are a € Z.

b) The residues of X;/X; are transcendental over k.
1) The theorem 2.3 can be reinterpreted in the general case saying that, by a finite
number of transformations, we can construct a discrete valuation v such that its
restriction to k((X1, X2)) is the usual order function multiplied by a.

2) The expressions
Xy =t
X2 = UQta

are a parametric equations of the valuation

V2 = V[k((X1,X32))-

The residue field As of v, is a purely transcendental extension of k of transcendence
degree 1, generated by X»/X; +m,. 03 : Ay — R,, defined by

X X
g2 (—2+mv> = YQ
1

is a k—section of the natural homomorphism. We know that exists a k—section o
which extends o5 in the sense of the previous remark.

3) Let us suppose that the residue of X3 /X is algebraic over k((X»/X1)+m,), and
let u3; be its image by o. Then v(X3 —u3; X1) = a1 > a. If a divides to ay then
there exists usz, € Im(c) and r > 1 such that v(X3 — u31 X7 — u3, X") = as > ay.
Let us suppose that us, is algebraic over k(us) too and a divides to as. Then we
can meet in one of the three situations shown in the next points.

4) The first situation is that, after a finite number of transformations, we obtain a
value a; such that a does not divide it. Then we make the transformation

S
Y= Xs— Y ug;X{,
i=1

with ug; algebraic over k(us) for all j =1,...,s. So we have to apply transforma-
tions to even the values of the variables and begin with all the procedure described
in this section. When this situation occurs, the value of the variables decrease, so
we can suppose that after a finite number of transformations we have reached an
strict minimum value (it can be 1) of the variables in all this procedure. We shall
denote this value by « in order not to complicate the notation. So we can suppose
that this situation will never occur again for any variable.
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5) The second situation is that, after a finite number of steps, we have a transcen-
dental residue of k(uz).This means that by making the transformation

83
_ J
Y3 = X5 — E uz; Xy,
j=1

and applying a finite number of monoidal transformation to equal the value of
new variable we have the ring L3[X1, X», Z3, X4, ... , Xp], where Ly = k[{u3;}32,]
and the residue (Z3/X1) + my is transcendental over k(uz). We shall note Az =
k(uz, {uz;}32,, us).

6) In this situation, if n = 3 then @ =1 and the extension of v to L((X1, X2, Z3))
is the usual order function, in analogy with the case n = 2 (theorem 2.3)

7) The last situation is that all the residues obtained are algebraic elements. Then
we have the next theorem

Theorem 2.6. In this situation, if all the residues are algebraic elements and
{usj}j>1 are theirs images under o (k—section constructed as in remark 2.4), then
the algebraic extension

k(uz) C k(uz, {us;}j>1) = As
has infinite degree.

Proof. We have
X3 — Z’LngX{ = 0,
i>1
because the sequence of partial sums of this series has increasing values. Let us
suppose that this extension has finite degree r. Let § be a primitive element of the
extension and {é = d1,02,...,0,} the set of conjugates of ¢ in the minimal normal
extension which contains k(us, d). Let us consider the next list of elements

m = o(X1) + p1(X1)61 + - + @1 (X1)6] "

nr = po(X1) + ©1(X1)0 4+ -+ + @r_1(X1)d] !

where p(X;) € k(u2)((X1)), and m1 is 3 -5 u:,»ij wrote as a linear combination of
the base of the extension {d1,67,...,d7}. By general properties of Galois extension

we have
T

I —m) = P(Y) € k(us)[X3][Y]-

i=1
Then P(X3) = 0, in contradiction to the fact that X;, X», X3 are formally inde-
pendent. O

Remark 2.7. In all this paper we are supposing that after each transformation we
come to denote by X; to the variables, in order to simplify the notations.

Remark 2.8. Let us suppose that we have repeated the construction of remark
2.5 with each variable X4,... ,X;_1, so we have a field

Az’—l = k(UQJCSJ .. aCi—l) - O—(Aﬁ)a

where each (j, is: or {{ug;}}t,,ur} if {ug;}}L, are algebraic elements over Ag_;

and u = o((Zr/X1)+mg) is a transcendental element over A,_; (i.e. the situation
of remark 2.5 5)) , or {ug;};>1 if Ar—1 C Ay is an algebraic extension of infinite
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degree (i.e. the situation of remark 2.5 7)). So we have two possible situations to
the variable X;:
1) Exists a transformation

s;
Yi=Xi— Y uiXi,
j=1
where the elements u;; are algebraic over A;_; and a finite number of monoidal
transformations such that we have the ring L;[X1,...,Xi—1,Zi, Xit1,--- » Xn],
with L; = L;—1({us;};L,) finite algebraic extension of L;—1 and u; = o((Z;/X1) +
my) is a transcendental element over A;_;. So we have the transcendental extension

A1 C A ({uig iy wi) = Ay

2) All the elements u;; which we’ve constructed are algebraic over A;_1, so we have
the infinite algebraic extension

Aior C A1 ({uij}iz1) = Ag.

The proof of this fact is equal to the proof of theorem 2.6. In order to preserve a
coherent notation we put L; = L; 1 in this case.

In these remarks we give an explicit construction of aring R,, C L,[X1,...,Xn] C
R3 such that the extension of v (let us denote it again by v) to his quotient field
L,((X4,...,X,)) satisfy the next properties:

1. The residual fields of these valuations, the initial and the extended, coincide

because this extension is into the extension to ¥, so both are equal to Ag.

2. By reordering of variables, we can suppose that the first m variables give us
all the transcendental residues over k, i.e. the residue of each X; /X is trans-
cendental over A; ; with i =2,... ,m. So the rest of variables X, 11,... ,Xn
are such that we enter in the procedure of remark 2.5 7).

3. The restriction v, ((x,,...,x,,)) is the usual order function multiplied by a €
7.

4. With the usual notations, the algebraic extension

A, C AL ({u,’j}]Zl), i=m+1,...,n
is infinite.
So we have the next result

Theorem 2.9. The residual field of this valuation v of L,((X1,...,Xp))| Ly (and
so of the initial valuation) is

Ap =k (u2, {us ;152 1,u35 -+ {um 1520 um) {tmrn}it, - {ung}i>1),
and the transcendence degree of A,, over k is m — 1.

Proof. In this section we have given a construction to write the variables in function
of X; and some transcendental and algebraic residues. So we have constructed the
embedding

0: La[X1, ..., Xa] = An[f]
X1 = t©
X = ut* i=2,...,m
X, = Zpauk,jtj, Uk 70, k=m+1,... ,n.
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Let us denote ¢ its extension to the quotient field, let v the usual order function
over A, ((t)). By the previous construction we have v = vo . So the residual field
of v is equal to the residual field of v, i.e. A,. O

A straight consequence of this theorem is the following well-known result

Corollary 2.10. The usual order function over K, has dimension n — 1, i.e. the
transcendence degree of its residual field over k is n — 1.

Through the constructions of the remarks 2.1, 2.5 and 2.8 we arrive at a corollary
which generalize the results of [2, 3]

Corollary 2.11. Let v be a discrete valuation of K,|k. The next conditions are
equivalent:

1) The transcendence degree of Ay over k is n — 1.

2) Ezists a finite sequence of monoidal transformations and coordinates change
which transform v in an order function.

We can resume the constructions of this section in the next theorem

Theorem 2.12. Let v be a discrete valuation of K|k, then

1. If the dimension of v is n — 1, we can embed k[X1,...,X,] into a ring
L[Y1,...,Y,], where L C o(Ay) and the extended valuation of v over the
field L((Y1, ... ,Yy)) is the usual order function.

2. If the dimension of v ism —1 < n — 1, we can embed k[X1,... ,X,] into a
ring L[Y1,...,Y,], where L C 0(Ay) and the restriction into L((Y1,...,Yy))
of the extended valuation of v over L((Y1,...,Yy)) is the usual order function
multiplied by a.

Example 2.13. Let us consider the embedding
P C|[X17X27X37X4]] — C'[t,T2,T3,T4]]
t

X1 —

Xo — Tt

X3 = T2t + Tot? + Tst?

Xy = TSt + T2 + Tst3 + Tut?,

with t, T5, T3 and T, variables over C. We are going to denote ¥ to its extension
to the quotient fields. The composition of this injective homomorphism with the
order function in ¢ gives a discrete valuation of C((X;, X2, X3, X4))|C, v = v 0 0.
The residues of X;/X; are not in C for i = 2,3, 4.

Let us put uz = o(X2/X1 + m,) transcendental element over C. By remarks
2.4 we know that we can construct o step by step, so let take us us = X2/X; and
Ag = (C(Ug )

The residue X3/X; + m, is algebraic over C(u2), in fact

Xs +m, = X3 +m
X1 CX? v
So we can take uz; = o((X3/X1) + m,) = uZ. The value of X3 — uz1 X; is 2, the
we have to see if the residue
X3 —uz Xy

X12 +m,



12 MIGUEL ANGEL OLALLA ACOSTA

is algebraic over C(uz2). We have that

X3 - U31X1 _ X2
Xf +m, = X, + my,
so it is algebraic and we can take uzy = us. Now v(X3 — u31 X7 —u32X?Z) = 3 and

we have to check if
X3 —u31 X1 —ugo X7

X13 +m,
is algebraic over Ay, in this case, as
X3 —ug1 X1 — uza X3
TR
Xj

this residue is transcendental. So we take
us = o (X3 —uz1 X1 — u3za X? tm > _ X1 X3 — X2~ X12X2.
X3 Y Xt
Let us take As = C(ua,us3).
Now we have to apply this procedure to the variable X,. The residue X, /X1 +m,
is algebraic over Az because

Xo, _ X3

X, T X
so we can take ug; = o((X4/X1) +m,) = ud € As. v(Xy —ug1X1) = 2, so we have
to check what happens with the residue

+m,,

X4 — U4 X
Tll +mv‘
Now )
X4 —unXy X;
T +m, = X_22 + My,
so it holds
Xy —uaXy s
Ugo = O T+mv = uj.
1

As 'Z)(X4 - ’u,41X1 - ’LL42X12) =3 and
Xy —ugi X1 — ugo X2 X1 X3 — X2 - X?X
4 41 ; 42 1+mU: 123 i 1 2+mv’
X; X}

we have

e = o Xy —un Xy —upX?
43 Xi;
The next residue is transcendental because v(Xy — w41 X1 — u42Xl2 — U43X13) =4

and , s
o (X4 —ug Xy — U442X1 - u43X1) -7
X7

+ mv> = Uus.

Then we can take
_ (X4 —ug1 X1 — ugo X7 — ugz X} )
Uy =0 1 +my
X7
B XX, — X2 — X2X2 - X2X3— X1 X2 — XX,
= %, .
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So the residual field of v is

X X1 X3 — X2 - X2X
Av:C<—2+mv, S T T2 o,
Xi
X2Xy— X2 - X3X2 - X?X53— X1 X2 — X7 X
<5 +m, ).
1
Then, by the transformation
X1 - N
X2 — sz

X3 = Y?2YV3+u3 Y1 +us Y
Xy = YPYi+uwaVi+uaY? +ussYP,

we extend the valuation v to one that is the usual order function over the field
(C((Yl ) }/27 }/3a Y;l))l(c

Remark 2.14. Exists discrete valuations of K|k of dimension strictly less than
n — 1. [1] gives an example of a discrete valuation of K3|k of dimension 1, and [4]
proves that exists discrete valuations of K,|k of dimension any number between 1
and n — 1, this proof is constructive.
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