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PILAR PISÓN CASARES Departamento de Álgebra. Facultad de Matem áticas. Univer-

sidad de Sevilla (Spain). E-mail: pilar@algebra.us.es

1 INTRODUCTION

Several recent results ([1], [2], [3], [4]) study the syzygies of toric varieties. In particular,

the equations de�ning an embedded af�ne toric variety can be described. When the toric

variety is projective one, the situation becomes special, since the semigroup de�ning it has

a system of generators which lies on an hyperplane (i.e. there exists a map L with the

properties in section 1 below).

The purpose of this paper is to give an estimation for the degrees of the equations de�n-

ing an embedded projective toric variety, and give an effective upper bound for such de-

grees. Our results show such upper bound can be derived from some general facts sta-

blished in [2]. As an illustration, we compute the bound explicitly in the case of toric

projective curves.

2 THE APERY SET

Let S be a cancellative �nitely generated commutative semigroup with zero element and

torsion free. Let Λ be a �nite set of generators for S, ]Λ = h. Denote G(S) the smallest

group containing S and let d be its rank. Then G(S) ' Zd ⊂ Qd ' V (S) := G(S)⊗Z Q.
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Let C(S) be the cone generated by S, i.e., the rational cone in V (S) generated by the image

S of S in V (S).
Suppose that there exists L : S → N satisfying

1. L(Λ) = {1}

2. L(n+m) = L(n) + L(m)

3. L(n) = 0⇐⇒ n = 0.

Fix, from now on, the data S, Λ, and L. Notice that the existence of L implies that S
satis�es the property S∩ (−S) = {0} therefore, the cone C(S) is strongly convex. Denote
f the number of extremal rays of C(S). Notice that, since C(S) generates V (S), one
obviously has f ≥ d. Then, there are subsets E ⊂ Λ with ]E = f such that C(E) = C(S),
where C(E) is the cone in V (S) generated by E.

Following [2], �x a partition Λ = E ∪ A, where E satis�es the above property. This

kind of partition is called convex partition . Let ]A = r = h− f .
The Apery set Q of S relative to E is de�ned to be the set given by

Q := {q ∈ S | q − e /∈ S, ∀e ∈ E}.

The Apery set Q is �nite as proved in Proposition 5.1 of [2]. The terminology Apery comes

from the use of the set Q, for the particular case of numerical semigroups, done in [5].

This �niteness property follows from the fact that the semigroup ring Z[S] is a �nite

integral extension of Z[E], however we will show below an effective proof of it. Set E =
{e1, . . . , ef} and A = {a1, . . . , ar}. We know that E contains a basis of V (S) as Q-

vector space. Since aj ∈ C(S), for any j, we have that

aj =
f∑

i=1

λijei, with λij ∈ Q+.

Therefore, for any j, ∃qj ∈ N such that

qjaj =
f∑

i=1

tijei, with tij ∈ N.

If m ∈ Q, m =
∑r

j=1 βjaj with βj < qj , for any j. Therefore, there exists only a �nite

number of m ∈ Q.

REMARK 2.1 In order to �nd the set Q it is enough:

1. Compute qj , for any j, 1 ≤ j ≤ r.

2. Check whether the elements m =
∑r

j=1 βjaj , with βj < qj for any j, is in Q.

Now, for any t ≥ 0, let Ht := {m ∈ S | L(m) = t}, and denote

Qt := Q ∩Ht,

and

t0 := min{t | Qt = ∅}.
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PROPOSITION 2.2 With the above notation, if Qt = ∅ then Qt′ = ∅ for all t′ ≥ t. In
particular, one has Qt = ∅ for t ≥ t0.

Proof. It is enough to prove that

Qt = ∅ ⇒ Qt+1 = ∅.

Suppose that m ∈ Qt+1. Then, m = m′ + a with a ∈ A and m′ ∈ Ht. Since Qt = ∅,
we have that m′ 6∈ Q and therefore there exists e ∈ E such that m′ − e ∈ S. But then
m− e ∈ S, a contradiction with m ∈ Q.

REMARK 2.3 In order to �nd t0 it is enough to use 2.1. Note that 2 in 2.1 could be

computed, in practice, by using an integer programming method.

3 SOME HOMOLOGY EXACT SEQUENCES

Fix a �eld k for coef�cients. Denote by Σ the simplex of parts of Λ. For any simplicial

subcomplex ∆ of Σ, let us denote by H̃l(∆), −1 ≤ l ≤ h − 2, the l − th vector space

of augmented homology of ∆ with values in k, and by h̃l(∆) its dimension. Note that the

value h̃l(∆) depends on the characteristic of the �eld k, however for l = 0 this is not so as

h̃0(∆) is exactly the number of connected components of ∆ minus 1.
Now, for any m ∈ S, consider the simplicial subcomplexes of Σ:

∆m = {F ⊂ Λ | m− nF ∈ S}

and

Tm = {F ⊂ E | m− nF ∈ S},

where nF :=
∑

n∈F n and n∅ = 0. Our objective will be to obtain some information

of ∆m by means of Tm. Notice that if A = ∅, then ∆m = Tm. To have a signi�cative

discussion from now on, assume that ]A = r ≥ 1.

DEFINITION 3.1 On the elements of S, de�ne a partial order >Q

m >Q m′ ⇐⇒ m−m′ ∈ S \Q.

If H ⊂ S, we say that m ∈ H is Q-minimal in the set H if m ≥Q m′, with m′ ∈ H ,

implies that m = m′.

PROPOSITION 3.2 The set

D(0) := {m ∈ S | H̃0(Tm) 6= 0}

is �nite and it can be determined by an algorithm.

Proof. The �niteness of D(0) is shown in Proposition 4.1 of [2]. We will give here an

effective proof of this fact.
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As above, set E = {e1, . . . , ef} and A = {a1, . . . , ar}. Notice that if H̃0(Tm) 6= 0
then, by choosing elements e1 and e2 in different connected component of Tm, one obtains,

for j = 1, 2:

m− ej ∈ S =⇒ m =
f∑

i=1

α
(j)
i ei +

f+r∑
i=f+1

α
(j)
i ai−f , with α

(j)
1 ≥ 1.

Set α(j) = (α(j)
1 , . . . , α

(j)
h ) ∈ Nh, for j = 1, 2, and let εj ∈ Nh, the vector with

coordinates equal to zero, excepting the jth one which is equal to 1. Then, α(j) � εj , for
j = 1, 2, where � stands for the componentwise partial order.

SeaA the matrix whose column vectors are the generators of S. Notice that m = Aα(j),

for j = 1, 2, and α = (α(1), α(2)) ∈ N2h satis�es

(A| − A)α = 0, and α� (ε1, ε2).

Then, if one considers the sets

Re1e2 := {β = (β(1), β(2)) ∈ N2h | (A| − A)β = 0, with β � (ε1, ε2)},

and

ΣRe1e2 := {m′ ∈ S |m′ = Aβ(1) with β ∈ Re1e2},

we have that α ∈ Re1e2 andm ∈ ΣRe1e2 . Furthermore, in fact one has, m ∈Me1e2 where

Me1e2 := {m′ ∈ ΣRe1e2 |m′ is Q−minimal in ΣRe1e2}.

In fact, notice that on the semigroup S one can write m = m′ +m′′, with m′ ∈ Me1e2

and m′′ ∈ S \Q. If m′′ 6= 0, then one has m′′ =
∑f

j=1 βjej +
∑f+r

j=f+1 βjaj−f , βj ∈ N
and βj 6= 0 for some j, 1 ≤ j ≤ f , which is a contradiction since e1 and e2 are in different
connected component of Tm.

Thus, to show that D(0) is �nite, it is enough to prove that each set Me1e2 is so. For it,

notice that the set

HRe1e2 := {β ∈ Re1e2 | β is minimal for �},

is �nite and set

ΣHRe1e2 = {m′ ∈ S |m′ = Aβ(1) with β ∈ HRe1e2}.

We claim that

Me1e2 ⊂ ΣHRe1e2 +Q.

The proof of the proposition follows from the claim.

In fact, let n ∈ Me1e2 . Set n = Aβ(1), with β ∈ Re1e2 . If β ∈ HRe1e2 , we claim is

obvious. Otherwise, β = γ + µ, with γ ∈ HRe1e2 and µ ∈ N2h. Then, n = n′ + n′′, with
n′ = Aγ(1) and n′′ = Aµ(1). It is clear by de�nition that n′ ∈ ΣHRe1e2 , and n

′′ ∈ Q
because n is Q-minimal in Me1e2 . This proves the claim.

Above effective proof gives rise to the algorithm mentioned in the statement of the

proposition. Next remark points out how one can proceed to the computation of D(0).
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REMARK 3.3 In order to �nd the set D(0) it is enough:

1. Compute the set Q (see 2.1).

2. Compute the sets ΣHRe1e2 , for any e1, e2 ∈ E, with e1 6= e2 using integer pro-

gramming (see [6]).

3. Check the Q-minimal elements in ΣHRe1e2 +Q and obtain Me1e2 , for any e1, e2 ∈
E, with e1 6= e2 .

4. Check the elements

m ∈
⋃

e1,e2

Me1e2 ,

such that H̃0(Tm) 6= 0 by using linear algebra.

Now, let us recover from [2] a construction which shows how the set D(0) can be com-

binatorially described.

• For any m ∈ G(S) and l ≥ −1, denote by Cl(Qm) the vector space which has the

set

{L ⊂ A | ]L = l + 1,m− nL ∈ Q}
as a basis.

• For any chain z in Ct(Qm), denote by θt(z) the projection on Cl−1(Qm) of the

simplicial boundary of z.

By Lemma 2.2 in [2], {C•(Qm), θ•} is a chain complex for any m. To understand better

the homology of this complex, consider, for any m ∈ S, the following subset of Σ:

Km = {L ∈ ∆m | (L ∩ E 6= ∅) or (L ⊂ A and m− nL ∈ S −Q)}.

It is easy to check that Km is a simplicial subcomplex of ∆m, so that one can consider the

chain complex C̃•(Km) and the relative chain complex C̃•(∆m,Km).
Notice that, by construction, one has an identi�cation C•(Qm) ' C̃•(∆m,Km).Notice

that if m ∈ Q, then one has that C•(Qm) ' k and Km = ∅. Otherwise, if m ∈ S \ Q,
since ∃e ∈ E such that m− e ∈ S, one obtains L = {e} ∈ Km and Km 6= {∅}.

Therefore, H̃−1(Km) = 0 for any m ∈ S. This allows to deduce, from the exact

sequence of complexes,

0→ C̃•(Km)→ C̃•(∆m)→ C•(Qm)→ 0,

that there is a long exact sequence of homology,

...→ Hl+1(Qm)→ H̃l(Km)→ H̃l(∆m)→ Hl(Qm)→ ...

...→ H̃0(Km)→ H̃0(∆m)→ H0(Qm)→ H̃−1(Km) = 0→

H̃−1(∆m)→ H−1(Qm)→ 0.

Now, in order to understand the homology H̃•(Km), let us consider the simplicial com-

plex given by the following disjoint union of subsets of Σ:

Km := Km∪{I∪J, I ⊂ A, J ⊂ E | m−nI−nJ /∈ S and m−nI−e ∈ S, ∀e ∈ J}.
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Notice that any I ∪ J in the second set of the above union is such that the cardinality of J
is at least 2. The complex Km is acyclic, i.e. H̃l(Km) = 0 for any l ≥ −1 (see Corollary

2.1 in [2]). Thus, the long exact sequence of homology coming from the exact sequence of

chain complexes

0→ C̃•(Km)→ C̃•(Km)→ C̃•(Km,Km)→ 0

gives rise to an isomorphism ρl+1 : H̃l+1(Km,Km)→ H̃l(Km), for every l ≥ −1.
To study the homology H̃•(Km,Km) let us consider, the chain of simplicial complexes

Km = M(−1)
m ⊂M(0)

m ⊂M(1)
m ⊂ ... ⊂M(r)

m = Km

where M(i)
m , −1 ≤ i ≤ r, is the simplicial subcomplex of Km given by:

M(i)
m := Km ∪ {L = I ∪ J ∈ Km | I ⊂ A, J ⊂ E, and ]I ≤ i}.

Now, H̃•(Km,Km) can be computed (see [2]) by means of the long exact sequences

...→ H̃l(M(j)
m ,M(i)

m )→ H̃l(M(k)
m ,M(i)

m )→ H̃l(M(k)
m ,M(j)

m )→ ....

for −1 ≤ i < j < k ≤ r. In fact, to compute H̃•(Km,Km) = H̃•(M
(r)
m ,M(−1)

m ), it will
be enough to use the above exact sequences for the concrete values of (i, j, k) given by

(−1, 0, 1), (−1, 1, 2), ..., (−1, r− 1, r), and take into account the following result which is
obvious by construction (see proposition 4.3 in [2]).

PROPOSITION 3.4 With the previous notations, for any m ∈ S, one has: for any l ≥ −1
and any i, 0 ≤ i ≤ r,

H̃l+1(M(i)
m ,M(i−1)

m ) '
⊕

I⊂A,]I=i

H̃l−i(Tm−nI
)

(in this formula, H̃l−i(Tm−nI
) = 0 if either l + 1 < i or m− nI /∈ S).

4 DEGREES OF THE EQUATIONS

It is known that the degrees of the elements in a minimal generating set of the ideal of S
are exactly

{L(m) | h̃0(∆m) 6= 0}

(see [7] and [4]). Moreover, each such degree t appears as many times as the sum of the

values h̃0(∆m) for m ∈ Ht. In order to estimate these degrees, we are going to use the

formulae and exact sequences in above section and, in particular, the following four terms

one

...→ H1(Qm)→ H̃1(Km,Km)→ H̃0(∆m)→ H0(Qm)→ 0.

PROPOSITION 4.1 Let m ∈ S ∩Ht with t > t0, then H0(Qm) = 0.
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Proof. If m− a ∈ Q and m ∈ S ∩Ht, then m− a ∈ Qt−1. Since t > t0, t− 1 ≥ t0 and
so Qt−1 = ∅ by 2.2. Thus, one has that C0(Qm) =

⊕
m−a∈Q k{a} = 0 and H0(Qm) =

0.

Now, on the other hand, by 3.4 one has for l = 0

H̃1(M(i)
m ,M(i−1)

m ) '
⊕

I⊂A,]I=i

H̃−i(Tm−nI
).

Thus, one has

H̃1(M(i)
m ,M(i−1)

m ) '
⊕

I⊂A,]I=i

H̃−i(Tm−nI ) = 0,

for i > 1, and the following diagram of exact sequences

...→ H̃1(M(0)
m ,M(−1)

m )→ H̃1(M(1)
m ,M(−1)

m )→ H̃1(M(1)
m ,M(0)

m )→ ....

...→ H̃1(M(1)
m ,M(−1)

m )→ H̃1(M(2)
m ,M(−1)

m )→ H̃1(M(2)
m ,M(1)

m ) = 0→ ...

...

...→ H̃1(M(r−1)
m ,M(−1)

m )→ H̃1(M(r)
m ,M(−1)

m ) = H̃1(Km,Km)→ H̃1(M(r)
m ,M(r−1)

m ) = 0→ ....

Again by 3.4 one has:

For l = 0, i = 1:
H̃1(M(1)

m ,M(0)
m ) '

⊕
a∈A

H̃−1(Tm−a).

For l = 1, i = 1:
H̃2(M(1)

m ,M(0)
m ) '

⊕
a∈A

H̃0(Tm−a).

For l = 0, i = 0:
H̃1(M(0)

m ,M(−1)
m ) ' H̃0(Tm).

Replacing in the �rst sequence of the above diagram, one obtains

..→
⊕
a∈A

H̃0(Tm−a)
ϕm→ H̃0(Tm)→ H̃1(M(1)

m ,M(−1)
m )→

⊕
a∈A

H̃−1(Tm−a)→ ...

REMARK 4.2 In order to describe the mapping ϕm we can do the following:

1. Compute the simplicial complexes Tm and Tm−a with a ∈ A. (Using Integer Pro-

gramming)

2. Take bases of H̃0(Tm) and H̃0(Tm−a) with a ∈ A, picking a point {e} in each

connected component and considering a generating tree, for example �x {e1} for
one concrete of the components and consider {e1} − {ei}, with ei over the other

components (see [7] for details).

3. Take the natural basis of
⊕

a∈A H̃0(Tm−a) obtained from the bases of H̃0(Tm−a)
computed in 2.
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4. Give the linear mapping ϕm by means of a matrix using that

ϕm({e1} − {e2}) =
{
{e1} − {e2} if m− e1 − e2 6∈ S
0 otherwise

(see Proposition 3.2 in [2])

Now, let

t1 := min{t | coker(ϕm) = 0 ∀m ∈ Ht},

i.e. the minimum t ∈ N such that ϕm is surjective for every m ∈ Ht. (There exists t1 by

3.2)

REMARK 4.3 In order to �nd t1 it is enough to check the condition

coker(ϕm) = 0

over the set D(0) computed by 3.3 and using the matrix given in 4.2.

LEMMA 4.4 Let m ∈ Ht with t > t0, then H̃−1(Tm−a) = 0, for any a ∈ A.

Proof. One has H̃−1(Tm−a) 6= 0 if and only if Tm−a = {∅}, i.e, if and only if m− a ∈ S
andm−a− e /∈ S, for every e ∈ E. Butm−a− e /∈ S, for all e ∈ E impliesm−a ∈ Q.
Since m − a ∈ Ht−1, we have that m − a ∈ Qt−1, t − 1 ≥ t0. But Q

t−1 = ∅ by 2.2.

Therefore, H̃−1(Tm−a) = 0.

THEOREM 4.5 Let S be a semigroup with the previous conditions. Then, the degrees

of the polynomials in a minimal generating set of the ideal of S are less or equal than

max(t0, t1).

Proof. The degrees we are looking for are

{L(m) | h̃0(∆m) 6= 0}.

Hence, it is enough to prove that if t > max(t0, t1), then H̃0(∆m) = 0 for any m ∈ Ht.

First, since t > t0 we obtain the exact sequences:

...→ H1(Qm)→ H̃1(Km,Km)→ H̃0(∆m)→ 0 = H0(Qm),

..→
⊕
m∈A

H̃0(Tm−a)
ϕm→ H̃0(Tm)→ H̃1(M(1)

m ,M(−1)
m )→ 0.

Second, since t > t1, we obtain H̃1(M(1)
m ,M(−1)

m ) = 0. Now, the diagram guarantees

that H̃1(Km,Km) = 0, and the result in the theorem follows from this fact.
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5 AN EXAMPLE: THE DEGREE OF THE EQUATIONS OF TORIC PROJEC-

TIVE CURVES

A projective toric curve is the projective scheme Proj(k[S]), where k is the ground �eld

and S is the subsemigroup of N2 generated by elements of a set Λ consisting of elements

of type

e1 = (d, 0), e2 = (0, d), a1 = (a11, a12), ..., ar = (ar1, ar2),

where d > 0 is the degree of the curve, ai1 + ai2 = d for each i, and gcd(d, a11, ..., a1r) =
1. The choice of the generators gives an embedding of the toric curve into the projective

space Pr+1. The homogeneous ideal de�ning this embedding is nothing but the ideal

associated to the semigroup S and the generator set Λ. Notice that the pair S,Λ satis�es

the conditions in section 1, if one chooses the map L given by L(a1, a2) = (a1 + a2)/d.
Hence the degrees of the homogeneous equations de�ning the toric projective curve can be

estimated from the results in above sections.

For it, consider the partition Λ = E ∪ A where E = {e1, e2} and A = {a1, ..., ar}.
Then, for each m ∈ S, the simplicial complex Tm has non trivial reduced homology if

either it consists of only the empty set (in that case the −1 reduced homology is isomorphic

to k) or it is the complex T consisting of the two points corresponding to e1 and e2 but not
to the edge joining both points (in that case the 0-th homology is isomorphic to k). Thus,
the estimation of the degrees of the equations will be given in terms of the sets Q and D
where Q is the Apery set (which can be viewed as the set of m ∈ S such that Tm = {∅})
andD is the set of those m ∈ S such that Tm = T . Note that the set D is empty if and only

if the curve is arithmetically Cohen-Macaulay, i.e. if the k-algebra k[S] is Cohen-Macaulay

(see [8]).

Now, in the Cohen-Macaulay case, the degree of the equations of the curve are bounded

by the integer t0 de�ned in section 1. In the non Cohen Macaulay case, one can also de�ne

the integer t2 to be the largest integer t such that D ∩Ht is non empty. Notice that one has

t1 ≤ t2, so the equations of the projective curve are bounded by the integer max(t0, t2).
Using the explicit description, given in [2], of the sets Q andD in terms of the numerical

semigroup S1 generated by the integers d, a11, ..., a1r 4.5, the integers t0 and t2 can be

easily computed as follows. First, for every b ∈ Z, set l(b) equal to in�nity if b /∈ S and,

otherwise, equal to the least number of integers among d, a11, ..., a1r (allowing repetitions)

with sum equal to b. Then, if B is the set of b ∈ S such that l(b − d) ≤ l(b), and if B′ is
the subset of B consisting of those b ∈ B such that b− d ∈ S, one has

t0 = 1 +max{l(b) | b ∈ B},

t2 = max{l(b− d) | b ∈ B′}.
Thus, one concludes the following result:

THEOREM 5.1 With assumptions and notations as above, the degrees of the polynomials

in a minimal set of homogeneous equations de�ning a toric projective curve C are bounded

by the integer

1 +max{l(b) | b ∈ B}
if C is arithmetically Cohen Macaulay, and by

min{1 +max{l(b) | b ∈ B},max{l(b− d) | b ∈ B′}},

if C is not arithmetically Cohen-Macaulay.
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