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Simplicial Complexes and Syzygies of Lattice
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Abstract

We compute the degrees of the syzygies of lattice ideals by means of
some simplicial complexes. The vertex sets of those complexes are subsets
of the extremal rays of the associated cone. In particular, we deduce a
way of computing the depth of the ideal. In the case when the lattice ideal
is homogeneous, the regularity is computed in terms of such complexes.

Introduction

Toric ideals with the terminology in [12] are special cases lattice ideals. Namely,
lattice ideals can be seen as a generalization of toric ideals when one allows
torsion in the semigroup S which parametrizes the variety.

A determination of the degrees of the syzygies of these ideals by means of
some simplicial complexes can be found in [8]. These simplicial complexes have
their vertices on a generating set of S, Λ.

In this paper, we adapt and extend the methods in [8] and give a method of
computing such degrees by means of other simplicial complexes appeared in [9].
The advantage of these new complexes is that they are constructed taking their
vertices on a subset of semigroup generators denoted by E, which in practice is
much more small. Precisely, a generator is taken over each extremal ray of the
associated cone.

The method uses the Apery set Q, relative to the subset of the generator
chosen, in addition to Hilbert bases of some diophantine systems. Both sets
are finite and can be computed by Integer Programming methods. From the
characterization of the depth in [9] we deduce how such characterization (in
terms of above simplicial complexes) becames, now, an effective one.

The results in this paper are significant when E 6= Λ. However, we remark
that there some interesting cases satisfying E = Λ, as, for instance, the Lawrence
ideals (see [3], [12] and [1]). In these cases Q = {0}, and all our results coincide
with the results in [8].

The last part of the paper considers the projective case. First Proposition 17
gives a characterization of when a lattice ideal is homogeneous which generalizes
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Lemma 4.14 in [12]. Finally, we give a characterization of the regularity of a
lattice ideal in terms of the considered complexes with vertices in E (see [7]
too).

1 i-Triangulations in a simplicial complex

Let ∆ be an abstract simplicial complex with vertices over a finite set Λ. This
means that ∆ ⊂ P(Λ), that ∅ ∈ ∆ and that if F ∈ ∆, then F ′ ∈ ∆, for any
F ′ ⊂ F .

If F ∈ ∆ and ]F = d + 1, F is said to be a face of ∆ of dimension d,
dimF = d. In particular, dim{∅} = −1.

Fix an orientation on each face of ∆, and consider the augmented chain
complex with values in a field k, i.e., consider the following objects:

• C̃i(∆) the k−vector space generated freely by the i-dimensional faces of
∆;

• δi : C̃i(∆)→ C̃i−1(∆) the k−linear mapping given by

δi(F ) =
∑

F ′∈∆,dimF ′=i−1

εFF ′F
′,

where εFF ′ = 0 if F ′ 6⊂ F , and εFF ′ = ±1 if F ′ ⊂ F , εFF ′ = 1 if the
orientation induced by F on F ′ is equal to the orientation chosen on F ′,
and εFF ′ = −1 otherwise.

• Z̃i(∆) = ker(δi) and B̃i(∆) = Im(δi+1) are the spaces of cycles and
boundaries respectively.

Hence, the reduced i-homology of the simplicial complex ∆ is the k-vector
space

H̃i(∆) = Z̃i(∆)/B̃i(∆).

Definition 1. Let i ≥ 0 and F ⊂ Λ. We will say that τ = {F1, . . . , Ft} is an
i-triangulation of F if the following properties are satisfied:

1. ]Fj = i+ 1, ∀j = 1, . . . , t.

2. F =
⋃t
j=1 Fj.

We will say that τ is an i-triangulation of F in ∆, if Fj ∈ ∆, ∀j = 1, . . . , t,
and F /∈ ∆.

The following on nonvanishing of the homology will be used later in this
paper.

Lemma 2. Assume that H̃i(∆) 6= 0, and let c ∈ Z̃i(∆)−B̃i(∆), c =
∑t
j=1 λjFj,

λj ∈ k − {0} for any j = 1, . . . , t, Fj 6= Fl if j 6= l. Then, if F =
⋃t
j=1 Fj one

has that
∀p ∈ F ∃j, 1 ≤ j ≤ t | Fj ∪ {p} /∈ ∆.
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Proof. See [8],1.1.

Corollary 3. If H̃i(∆) 6= 0, there exists c ∈ Z̃i(∆) − B̃i(∆), c =
∑t
j=1 λjFj,

such that τ = {F1, . . . , Ft} is an i-triangulation of F in ∆, for F =
⋃t
j=1 Fj.

Proof. It is enough to take c ∈ Z̃i(∆) − B̃i(∆) and F, F1, . . . , Ft as in Lemma
2.

2 Simplicial Complexes associated to a Semi-
group

Fix k a commutative field, S a cancellative finitely generated commutative semi-
group satisfying the property S∩(−S) = (0), and Λ a system of generators of S,
]Λ = h. Let G(S) be the smallest group containing S, and V (S) := G(S)⊗Z Q.

Let C(S) be the cone generated by S, i.e., the rational cone in V (S) gener-
ated by the image S of S in V (S). Notice that C(S) is strongly convex because
S ∩ (−S) = (0).

Let d be the dimension of S, i.e. d = rk G(S), and let f be the number
of extremal rays of the strongly convex cone C(S). Notice that, since C(S)
generates V (S), one obviously has f ≥ d. Then, there are subsets E ⊂ Λ with
]E = f such that C(E) = C(S), where C(E) is the cone in V (S) generated by
E.

Following [9], fix a partition Λ = E∪A, where E satisfies the above property.
This kind of partition is called convex partition. Let ]A = r = h− f .

For any m ∈ S, consider the simplicial complexes:

∆m = {F ⊂ Λ | m− nF ∈ S}

and
Tm = {F ⊂ E | m− nF ∈ S},

where nF :=
∑
n∈F n and n∅ = 0.

Our objective will be to give an effective method for computing the finite
sets

D(i) := {m ∈ S | H̃i(Tm) 6= 0},

for any i ≥ 0. The finiteness of D(i) is shown in Proposition 4.1 of [9], a such
method is given for i = −1, 0 in [6]. For i = −1, notice that the set D(−1) is
the Apery set Q of S relative to E given by

Q := {m ∈ S | m− e /∈ S, ∀e ∈ E}.

Since C(E) = C(S) for any element a ∈ A there exists qa ∈ N such that

qa · a =
∑
e∈E

λe · e
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with λe ∈ N. Therefore, Q can be obtained, for example, cheking whether the
elements m =

∑
a∈A λa · a, with λa < qa, are in Q.

Our method follows from Proposition 11, needs the set Q, and it works for
any i ≥ 0.

As application of this method, in section 5 the degrees of the syzygies of
some ideals will be obtained. To do this, we shall use the following result of [9].

Consider, for any t ≥ 0, the sets

Ct = {m ∈ S |m = m+nF , withm ∈ D(i) and F ⊂ A, ]F = t−i, for some i ≥ −1}.

Proposition 4. For any t ≥ 0, one has H̃t(∆m) = 0 if m 6∈ Ct.

Proof. It is the Proposition 3.3 in [9].

The above proof and our Theorem 19 need new combinatorical objects:

• For any m ∈ G(S) and l ≥ −1, denote by Cl(Qm) the vector space which
has the set

{L ⊂ A | ]L = l + 1,m− nL ∈ Q}

as a basis.

• For any chain z in Ct(Qm), denote by θt(z) the projection on Ct−1(Qm)
of the simplicial boundary of z.

{C•(Qm), θ•} is a chain complex for any m (see [9]). To understand better
the homology of this complex, consider, for any m ∈ S, the following set:

Km = {L ∈ ∆m | (L ∩ E 6= ∅) or (L ⊂ A and m− nL ∈ S −Q)}.

It is easy to check that Km is a simplicial subcomplex of ∆m, so that one can con-
sider the chain complex C̃•(Km) and the relative chain complex C̃•(∆m,Km).

Notice that, by construction, one has an identification C•(Qm) ' C̃•(∆m,Km).
Moreover if m ∈ Q, then one has that C•(Qm) ' k and Km = ∅. Otherwise, if
m ∈ S −Q, since ∃e ∈ E such that m− e ∈ S, one obtains L = {e} ∈ Km and
Km 6= {∅}.

Therefore, H̃−1(Km) = 0 for any m ∈ S. This allows to deduce, from the
exact sequence of complexes,

0→ C̃•(Km)→ C̃•(∆m)→ C•(Qm)→ 0,

that there is a long exact sequence of homology,

...→ Hl+1(Qm)→ H̃l(Km)→ H̃l(∆m)→ Hl(Qm)→ ...

...→ H̃0(Km)→ H̃0(∆m)→ H0(Qm)→ H̃−1(Km) = 0→

H̃−1(∆m)→ H−1(Qm)→ 0.
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Now, in order to understand the homology H̃•(Km), let us consider the
simplicial complex given by the following disjoint union of subsets of Σ:

Km := Km∪{F∪J, F ⊂ A, J ⊂ E | m−nF−nJ /∈ S and m−nF−e ∈ S, ∀e ∈ J}.

Notice that any F ∪ J in the second set of the above union is such that the
cardinality of J is at least 2.

The complex Km is acyclic, i.e. H̃l(Km) = 0 for any l ≥ −1 (see Corollary
2.1 in [9]).

Thus, the long exact sequence of homology coming from the exact sequence
of chain complexes

0→ C̃•(Km)→ C̃•(Km)→ C̃•(Km,Km)→ 0

gives rise to an isomorphism ρl+1 : H̃l+1(Km,Km)→ H̃l(Km), for every l ≥ −1.

Lemma 5. With the previous notations:

a) H̃l(∆m) ∼= H̃l+1(Km,Km), ∀l ≥ r.

b) If H̃r(Km,Km) 6= 0 then H̃r−1(∆m) 6= 0.

Proof. It is enough to use that Hl(Qm) = 0, ∀l ≥ r and the above sequences.

To study the homology H̃•(Km,Km) let us consider, the chain of simplicial
complexes

Km = M(−1)
m ⊂M(0)

m ⊂M(1)
m ⊂ ... ⊂M(r)

m = Km

where M(i)
m , −1 ≤ i ≤ r, is the simplicial subcomplex of Km given by:

M(i)
m := Km ∪ {L = F ∪ J ∈ Km | F ⊂ A, J ⊂ E, and ]F ≤ i}.

Now, H̃•(Km,Km) can be computed (see [9]) by means of the long exact se-
quences

...→ H̃l(M(j)
m ,M(i)

m )→ H̃l(M(k)
m ,M(i)

m )→ H̃l(M(k)
m ,M(j)

m )→ ....

for −1 ≤ i < j < k ≤ r. In fact, to compute H̃•(Km,Km) = H̃•(M
(r)
m ,M(−1)

m ),
it will be enough to use the above exact sequences for the concrete values of
(i, j, k) given by (−1, 0, 1), (−1, 1, 2), ..., (−1, r− 1, r), and take into account the
following result which is obvious by construction (see Proposition 3.2 in [9]).

Proposition 6. With the previous notations, for any m ∈ S, one has: for any
l ≥ −1 and any i, 0 ≤ i ≤ r,

H̃l+1(M(i)
m ,M(i−1)

m ) '
⊕

F⊂A,]F=i

H̃l−i(Tm−nF
)

(in this formula, H̃l−i(Tm−nF
) = 0 if either l + 1 < i or m− nF /∈ S).
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3 Finding the finite set D(i)

Fix the same notation than section 2. Notice that since S is finitely generated
commutative, we can consider excepting isomorphism

G(S) = Zd ⊕ Z/a1Z⊕ · · · ⊕ Z/asZ,

where ai ∈ Z, 1 ≤ i ≤ s. Set Λ = {n1, . . . , nh} a system of generators of S. Let A
be the matrix whose column vectors are the generators of S, A := (n1| . . . |nh) ∈
M(d+s)×h(Z), considering the elements ni as elements in Zd+s, and let

A(t) :=


A −A 0 0 0 0 0
0 A −A 0 0 · · · 0 0
0 0 A −A 0 0 0

. . . . . . . . .
0 0 0 0 0 A −A

 ∈M(d+s)(t−1)×ht(Z).

Let F ⊂ E and let τ = {F1, . . . , Ft} be an i-triangulation of F . Set eFl
∈ Nh

the vector with coordinates equal to zero, excepting the jth one which is equal
to one, for any j ∈ Fl. Set eτ := (eF1 , . . . , eFt

) ∈ Nht, and set

Rτ := {α = (α(1), . . . , α(t)) ∈ Nht | A(t)α = 0 , α� eτ},

where � stands for the componentwise partial order in Nht.
Notice that if α ∈ Rτ and it is written α = (α(1), . . . , α(t)) with α(j) ∈ Nh,

then for any j, 1 ≤ j ≤ t, one obtains Aα(1) = · · · = Aα(t) = m ∈ S for some
m.

Set

ΣRτ := {m ∈ S | m = Aα(1), for some α = (α(1), α(2), . . . , α(t)) ∈ Rτ}.

Lemma 7. Let m ∈ S, F ⊂ E and let τ = {F1, . . . , Ft} be an i-triangulation
of F in Tm, then m ∈ ΣRτ .

Proof. It is enough to use that Fj ∈ Tm if and only if there exists α(j) ∈ Nh

such that Aα(j) = m, and α(j) � eFj .

It is well-known that the set HRτ := {α ∈ Rτ | α is minimal for �} is
finite, hence the set

ΣHRτ := {m ∈ S | m = Aα(1), α = (α(1), α(2), . . . , α(t)) ∈ HRτ},

is finite.

Definition 8. On the elements of S, define a partial order >Q

m >Q m′ ⇐⇒ m−m′ ∈ S −Q.

If H ⊂ S, we say that m ∈ H is Q-minimal in the set H if m ≥Q m′, with
m′ ∈ H, implies that m = m′.

7



Set
Mτ := {m ∈ ΣRτ | m is Q−minimal in ΣRτ}.

Lemma 9. In the conditions as above, for any m ∈ ΣRτ , there exists m′ ∈Mτ

such that m = m′ +m′′, with m′′ = 0 or m′′ ∈ S −Q.

Proof. It is a consequence of that the condition S∩ (−S) = {0} guarantees that
the number of different expressions of m as sum of non null elements in S is
finite (Proposition 1.2 in [4]).

Lemma 10. In the conditions as above, Mτ ⊂ ΣHRτ + Q. Therefore, the set
Mτ is finite.

Proof. Let m ∈ Mτ . Then, m = Aα(1) with α = (α(1), . . . , α(t)) ∈ Rτ . If
α ∈ HRτ , we are finished. Suppose that α /∈ HRτ . Then α = α′ + α′′, with
α′ ∈ HRτ and α′′ ∈ Nht. Then, if m′ = Aα′(1)

,m′ ∈ ΣHRτ . By m − m′ =
m′′ = Aα′′(1) ∈ S and m is Q−minimal, if m′′ 6= 0 we obtain that m′′ ∈ Q.

Proposition 11. The set

D(i) := {m ∈ S | H̃i(Tm) 6= 0}

is finite and it can be determined by an algorithm.

Proof. Consider m ∈ D(i). Notice that it is enough to prove that m ∈ Mτ for
some i-triangulation τ of F in Tm.

By corollary 3 we obtain that there exists c ∈ Z̃i(Tm) − B̃i(Tm), c =∑t
j=1 λjFj , such that τ = {F1, . . . , Ft} is an i-triangulation of F in Tm, for

F =
⋃t
j=1 Fj .

Ifm ∈Mτ , we are finished. Otherwise, by lemmas 7 and 9, m = m′+m′′ with
m′ ∈ Mτ and m′′ ∈ S − Q. Set E = {n1, . . . , nf} and A = {nf+1, . . . , nf+r},
we can write m′′ =

∑f+r
j=1 βjnj , βj ∈ N and βj 6= 0 for some j, 1 ≤ j ≤ f .

Suppose that β1 6= 0. If n1 ∈ F , we apply lemma 2 for p = 1. Then,
there exists j, 1 ≤ j ≤ t, such that n1 /∈ Fj and Fj ∪ {n1} /∈ Tm. However,
m′ − nFj ∈ S because m′ ∈Mτ , and m′′ − n1 ∈ S because β1 6= 0. This means
that m−nFj

−n1 ∈ S which is a contradiction with Fj ∪{n1} 6∈ Tm. Therefore,
n1 6∈ F .

By n1 /∈ F we obtain in a similar above way that m− nFj
− n1 ∈ S, for any

j. But then F ′j = Fj ∪ {n1} ∈ Tm and

c′ =
t∑

j=1

λjF
′
j ∈ C̃i+1(Tm).

Then, we have that δi+1(c′) = c, which is a contradiction because c 6∈
B̃i(Tm). Therefore m′′ = 0, and our result is proved.
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Remark 12. The following construction makes effective the characterization
of q := depthR k[S] given in Theorem 4.1 in [9]. Moreover, it is an effective
method to check the Cohen-Macaulay property (d = q).

The set D(i) can be computed with the following steps:

1. Compute the set Q.

2. Compute ΣHRτ , for any i-triangulation τ of F , F ⊂ E, ]F ≥ i+ 2. (Use
Integer Programming, see for example [11])

3. Check the Q-minimal elements in the set

ΣHRτ +Q

to obtain Mτ , for any i-triangulation τ of F , F ⊂ E, ]F ≥ i+ 2.

4. Determine the set

G = {(m, τ, F ) | m ∈Mτ , τ i− triangulation of F in Tm}.

5. Check whether H̃i(Tm) 6= 0 on the set

{m ∈ S | (m, τ, F ) ∈ G}.

4 Degrees of syzygies of lattice ideals

We use the notation of precedent sections. Let k[S] be the semigroup k-algebra
associated to S, which is considered by k[S] =

⊕
m∈S kχ

m, where χm · χm′ =
χm+m′ . Let R = k[X1, . . . , Xh] be the polynomial ring in h variables.

k[S] is obviously an S-graded ring, and R is S-graded assigning the degree
ni to Xi. Let m be the irrelevant ideal of R. The k−algebra morphism,

ϕ : R −→ k[S],

defined by ϕ(Xi) = χni , is an S−graded morphism of degree zero. Thus, the
ideal I = ker(ϕ) is an S−homogeneous ideal. Since ϕ is surjective, k[S] ' R/I .

I is a lattice ideal because it is the ideal associated to the lattice

ker(S) := {u ∈ Zh |
h∑
i=1

niui = 0}

(see Lemma 9 in [13]). This means that

I = 〈Xu+
−Xu− | u ∈ ker(S)〉,

where u = u+ − u− with u+,u− ∈ Nh, and supp(u+) ∩ supp(u−) = ∅.
Notice that the property S∩(−S) = (0) is equivalent to the property ker(S)∩

Nh = (0).
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On the other hand, the condition S ∩ (−S) = {0} guarantees the S−graded
Nakayama’s lemma (Proposition 1.4 in [4]). Then, there exists a minimal
S−graded free resolution of k[S].

Let Ni be the corresponding i-syzygy module (N0 = I) and consider the
k−vector spaces

Vi(m) :=
(Ni)m

(mNi)m
,m ∈ S.

In particular, since R is noetherian, one has Vi(m) = 0 for all m but finite many
of values. Set

S(i) := {m ∈ S | Vi(m) 6= 0},

the set of S-degrees for the minimal i-syzygies of k[S].

Proposition 13. The set of S-degrees for the minimal i-syzygies of k[S] can
be computed from the simplicial complexes Tm, m ∈ S.

Proof. We are looking for the set S(i). There exists an effective isomorphism

H̃i(∆m) ' Vi(m),

for any m ∈ S (see [5]). Then,

S(i) = {m ∈ S | H̃i(∆m) 6= 0}.

Proposition 4 guarantees that S(i) ⊂ Ci, hence it is enough to compute the
set Ci from the simplicial complexes Tm, m ∈ S. But it is possible by using
Proposition 11.

Remark 14. To find the S-degrees for the minimal i-syzygies of k[S] one can
do the following:

1. Compute D(j), for any j ≤ i. (See Remark 12)

2. Compute the set Ci. (It is enough to use the definition)

3. Check the elements m ∈ Ci such that H̃i(∆m) 6= 0 and obtain S(i).

Theorem 15. The minimal S-graded free resolution of k[S] can be computed
from the simplicial complexes Tm, m ∈ S.

Proof. It is enough to take the images of the elements in a basis for the i-reduced
homology space H̃i(∆m) by the effective isomorphism

H̃i(∆m) ' Vi(m),

for any m ∈ S(i).

Remark 16. The minimal S-graded free resolution of k[S] can be computed
doing:

10



1. For any i, 1 ≤ i ≤ h− 2:

• Compute S(i). (Remark 14)
• Compute a basis for the i-reduced homology H̃i(∆m). (Using linear

Algebra and integer Programming)
• Take the images of the element in the above basis by the effective

isomorphism
H̃i(∆m) ' Vi(m)

(Remark 3.6 in [5]), and obtain a minimal generating set of the i-
syzygy module of k[S], Ni.

2. The minimal S-graded free resolution of k[S] is:

0→ Rbh−1
ϕh−1→ · · · → Rb2

ϕ2→ Rb1
ϕ1→ R

ϕ0→ k[S]→ 0,

where for any i, 1 ≤ i ≤ h − 1, bi =
∑
m∈S(i−1) dimkH̃i−1(∆m) and the

mapping ϕi is given by the matrix whose column vectors are generators of
Ni−1 (N0 = I).

Notice that if

p := max{i | bi 6= 0, 1 ≤ i ≤ h− 1},

the Auslander-Buchbaum theorem guarantees that p = h− depthR k[S].

5 The regularity of a homogeneous lattice ideal

Let L ⊂ Zh be a lattice, and let I be the ideal associated to L, i.e.

I = 〈Xu+
−Xu− | u ∈ L〉.

We can consider the semigroup S ⊂ Zh/L generated by {e1 +L, . . . , eh+L},
where the ei are the unit vectors in Nh. Set ni = ei + L, 1 ≤ i ≤ h. Then,
I = ker(ϕ), where as in the precedent section,

ϕ : R −→ k[S]

is defined by ϕ(Xi) = χni .
The following result characterizes when the ideal I is homogeneous for the

natural grading. We will not use the special form of the generators of S. This
is not strange because the lattice ideals and the ideals of finitely generated
commutative semigroups are the same thing (Lemma 9 in [13]). Here, it is not
necessary the condition S ∩ (−S) = (0).

We can suppose that

S ⊂ Zd ⊕ Z/a1Z⊕ · · · ⊕ Z/asZ,

with ai ∈ Z non null, 1 ≤ i ≤ s.
Let π be the projection over the first coordinates

π : Zd+s −→ Zd.

11



Proposition 17. With the above notations, I is homogeneous for the natural
grading if and only if there exists w ∈ Qd such that w · π(ni) = 1, for any
i = 1, . . . , h.

Proof. Let S1 be the subsemigroup of Zd+s generated by {n′1, . . . , n′h+s}, where

• if 1 ≤ i ≤ h, n′i = ni considering ni as an element of Zd+s,

• if h + 1 ≤ i ≤ h + s, n′i is the vector in Zd+s with coordinates equal to
zero, excepting the (d+ i− h)-th one which is equal to ai−h.

Let π′ : Zh+s −→ Zh be the projection over the first coordinates.
Notice that L1 := π′(ker(S1)) is a lattice of Zh, moreover, L1 = ker(S).
On the other hand, consider S2 the subsemigroup of Zd generated by π(ni),

1 ≤ i ≤ h. Set L2 := ker(S2) which is another lattice of Zh.
It is easy to see that L1 ⊂ L2. We claim that both lattices have the same

rank. In fact, it is clear that rk(L1) ≤ rk(ker(S1)) = (d + s) − rk(A′), where
A′ := (n′1| . . . |n′h+s) ∈ M(d+s)×(h+s)(Z). From the special form of this matrix
follows that if C is a basis of ker(S1), then π′(C) is a basis of π′(ker(S1)).
Therefore, rk(L1) = rk(ker(S1)). Notice also that

rk(A′) = s+ rk(π(n1)| . . . |π(nh)),

which implies that

rk(ker(S1)) = d− rk(π(n1)| . . . |π(nh)) = rk(L2).

Therefore, we have prove that

rk(L1) = rk(L2).

On the other hand, notice that it is satisfied that

I = 〈Xu+
−Xu− | u ∈ L1〉.

Therefore, I is homogeneous if and only if (1, . . . , 1) ∈ L⊥1 . Since rk(L1) =
rk(L2) and L1 ⊂ L2 , it holds if and only if (1, . . . , 1) ∈ L⊥2 , and hence if and
only if there exists w ∈ Qd such that w · π(ni) = 1, for any i = 1, . . . , h.

Lemma 18. With the above notations, if I is homogeneous, then S ∩ (−S) 6=
(0).

Proof. Suppose that S ∩ (−S) 6= (0), then there exist αi ∈ N such that∑h
i=1 αini = 0, with some αi 6= 0. Hence,

∑h
i=1 αiπ(ni) = 0. Let w ∈ Qd be the

vector given by Proposition 17. We obtain
∑h
i=1 αi(π(ni) ·w) =

∑h
i=1 αi = 0,

that is a contradiction.
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The following theorem is a formula (recently obtained in [7]) for the regu-
larity of I in terms of the simplicial complexes Tm. Above computations makes
effective such formula. For the sake of completeness of the paper, we prove the
result.

Notice that if I is homogeneous and m ∈ S, it is well defined ||m|| = ||α||1,
where m = Aα and ||α||1 =

∑h
i=1 αi.

Theorem 19. With the above notations, assume that I is homogeneus, then

reg(I) = max−1≤i≤f−2{ui − i},

where ui = max{||m|| | m ∈ D(i)}.

Proof. The regularity of I is reg(I) = max0≤i≤h−2{ti − i}, where ti is the
maximum degree of the minimal i-syzygies of I (see, for example, [2]).

Let i be such that 0 ≤ i ≤ h − 2 and m ∈ S(i) such that ti = ||m||. Since
S(i) ⊂ Ci (Proposition 4), m = m+nF wherem ∈ D(j) for some−1 ≤ j ≤ f−2,
F ⊂ A and ]F = i− j. Therefore,

ti − i = ||m|| − i = ||m||+ (i− j)− i ≤ uj − j.

Hence, we obtained that

reg(I) ≤ max−1≤i≤f−2{ui − i}.

In order to prove the contrary inequality, we considerM := max−1≤i≤f−2{ui−
i}, and the finite set P := {(m, i) | m ∈ S, ||m|| = ui, and M = ||m|| − i}.

Take (m, i) ∈ P with maximum ||m||. Let m := m+ nA and t := i+ r. We
claim that H̃t(∆m) 6= 0.

Our claim proves the contrary inequality because m ∈ S(t) and therefore,
M = ||m|| − i = ||m|| − t ≤ reg(I).

In order to prove the claim: let F ⊂ A with ]F = j, where 0 ≤ j ≤ r − 1.
If H̃t−j(Tm−nF

) 6= 0, since ||m− nF || − (t− j) = ||m|| − i we obtain that (m−
nF , t− j) ∈ P. But this is a contradiction because ||m− nF || > ||m||. Therefore
H̃t−j(Tm−nF

) = 0. A similar reasoning provides that H̃t−j−1(Tm−nF
) = 0.

Using the Proposition 6:

a) H̃t+1(M(r)
m ,M(r−1)

m ) ∼= H̃t−r(Tm).

b) H̃l(M
(j)
m ,M(j−1)

m ) = 0, for any j = 0, . . . , r − 1, and for l = t, t+ 1.

From (b) and the following diagram of exact sequences:

· · · → H̃t+1(M(0)
m ,M(−1)

m ) = 0→ H̃t+1(M(1)
m ,M(−1)

m )→ H̃t+1(M(1)
m ,M(0)

m ) = 0→ · · ·

· · · → H̃t+1(M(1)
m ,M(−1)

m ) = 0→ H̃t+1(M(2)
m ,M(−1)

m )→ H̃t+1(M(2)
m ,M(1)

m ) = 0→ · · ·
...
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· · · → H̃t+1(M(r−1)
m ,M(−1)

m ) = 0→ H̃t+1(M(r)
m ,M(−1)

m ) → H̃t+1(M(r)
m ,M(r−1)

m )→ 0 · · ·
‖

H̃t+1(Km,Km)

is obtained that

H̃t+1(M(r)
m ,M(r−1)

m ) ∼= H̃t+1(Km,Km).

Therefore, using a) we obtain

(∗) H̃t+1(Km,Km) ∼= H̃i(Tm) 6= 0.

If i ≥ 0, by (∗) and a) of Lemma 5, it is obtained that

H̃i(Tm) ∼= H̃t(∆m).

If i = −1, then by (∗) and b) of Lemma 5, it is obtained H̃r−1(∆m) 6= 0. Now,
the claim is proved.

Remark 20. If I is a homogeneous lattice ideal, the regularity of I can be
computed with the following steps:

1. Compute D(i), for any i, −1 ≤ i ≤ f − 2. (Remark 12)

2. Compute
ui = max{||m|| | m ∈ D(i)},

for any i, −1 ≤ i ≤ f − 2.

3. reg(I) = max−1≤i≤f−2{ui − i}.

Finally, notice that the computation of the regularity does not require the
computation of the complete minimal resolution, neither the computation of
S(i), where 0 ≤ i ≤ h − 2, it is enough to determine the sets D(i), where
−1 ≤ i ≤ f − 2.
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