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The minimal free resolution of a lattice ideal ∗

Pilar Pisón Casares

Abstract

A combinatorial description of the minimal free resolution of a lattice
ideal allows to the connection of Integer Lineal Programming and Algebra.
The non null reduced homology spaces of some simplicial complexes are
the key. The extremal rays of the associated cone reduce the number of
variables.

Introduction

The objective of this paper is to describe how Integer Lineal Programming allows
us to obtain the minimal free resolution of a lattice ideal, I, from the generators
of the semigroup, S, which parametrizes the associated algebraic variety.

Concretely, Hilbert bases of some diophantine systems are employed. These
bases are the solution of the typical Integer Lineal Programming Problem, but
where the minimality respect to a cost map is not imposed.

Anybody who has solved linear diophantine equations in non negative in-
tegers, even with the more recent methods (see [19], [21], [24], [42] and [44]),
knows that only in the case of a few variables the problem is tractable. It is
well-known that this problem is NP-complete (see for example [36]). Therefore,
from the computational viewpoint, our description is not practical in order to
obtain the minimal free resolution. However, the method can be used to the
contrary. Our description allows the understanding of the relation between the
syzygies of the ideal and Integer Lineal Programming. One can compute with
Gröbner bases using for example the Schreyer Theorem and its improvements
(see [33]), and look for applications to Integer Programming. This philosophy
comes from [20] and [44], and provides a lot of applications in [48]. However, at
the moment only the case of the ideal I has been employed, but not the syzygies
of the higher order (the ideal can be considered as the syzygies of order zero).
Our description yields a possible way to attempt a generalization.

As in [30] and [46], the combinatorial objects we use are simplicial complexes.
Concretely, for any element of the semigroup S, we associate two simplicial
complexes. The elements in the semigroup represent the degrees of the syzygies,
in fact, the minimal free resolution is S-graded. The study of the non null
reduced homology spaces of the simplicial complexes provides the concept of
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i-triangulation. This concept is the key in order to understand the relation
between Integer Lineal Programming and Algebra, concretely, between Hilbert
bases and ith syzygies.

By means of a partition of the generating set of S, the number of variables is
reduced to the number of extremal rays of the associated cone. This is another
possible point to continue researching. A generator over each extremal ray is
chosen. Fixing the attention on this subset of generators, a new resolution is
considered, the minimal free resolution of I over a polynomial ring with only
the variables corresponding to these generators.

We begin in section 1 by introducing the algebraic objects we employ. In
section 2 and 3 we give the combinatorial description of the two minimal free
resolutions respectively. In section 4, the relation between the two resolutions
is studied. Section 5 is dedicated to the i-triangulations in a simplicial complex.
The exposition of how to compute both resolutions with Gröbner bases is in
section 6. All these sections include the results we have already obtained using
the techniques this paper describes. For details the reader may also want to
consult the reference joined to the concrete result. Finally, in section 7, following
[4], we introduce another free resolution of the ideal I, the hull resolution. The
comparison of this resolution with the minimal one is also a research objective.

Another possible application of our description is in Toric Geometry. The
normal toric varieties [27], and more generally, the non-normal toric varieties
[28] and [48], appear as algebraic varieties whose ideals are lattice ones. Among
our results can be found descriptions of the regularity of these ideals as well as
upper bounds for the degree of their generators. It is expected that there is some
relation between these results and the conjetures of [25] and [48] (see also [47]).
For a survey of the modern developments in the theory of toric varieties see [22].
Some applications of this theory to the Arithmetic and Integer Programming
can be found in [18].

On the other hand, it is known that any binomial ideal is an intersection of
cellular ideals [26]. The cellular ideals are closely related to the lattice ideals.
Using the cellular decomposition of a binomial ideal, it is possible to obtain
information about the binomial ideal from the properties of the lattice ideals
(for example, primary decomposition or nilpotence index, see [34] and [35]).

1 The two minimal free resolutions associated
with a lattice ideal

Let k be a commutative field and k[X] = k[X1, . . . , Xn] the polynomial ring in
n indeterminates, and the ideal m = (X1, . . . , Xn).

Let L ⊂ Zn be a lattice. The ideal of the lattice L is

IL = 〈Xu+
−Xu− | u ∈ L〉,

where u = u+ − u−, u+, u− ∈ Nn, have disjoint support.
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Let S be a cancellative commutative semigroup, with zero element and gen-
erated by n elements Λ = {m1, . . . ,mn}. Thus, S is a subsemigroup of a finitely
generated abelian group. Denote G(S) the smallest group containing S. The
semigroup k-algebra is k[S] =

⊕
m∈S kχ

m, (χm ·χm′ = χm+m′). The ideal of S
relative to Λ is ker(ϕ0), where ϕ0 is the k-algebra

ϕ0 : k[X] −→ k[S]

defined by ϕ0(Xi) = χmi . Notice that ϕ0 is surjective, and hence k[S] '
k[X]/ ker(ϕ0).

If IL is the ideal of the lattice L ⊂ Zn, then IL is the ideal of the subsemi-
group of Zn/L generated by {e1 + L, . . . , en + L}, where the ei’s are the unit
vectors.

On the other hand, the ideal of any semigroup S relative to a generating set
Λ is the ideal of the lattice {u = (u1, . . . , un) ∈ Zn|

∑
uimi = 0}. (See [50] for

details)
From now on, we fix a lattice L or equivalently a semigroup S. Assume that

L ∩ Nn = (0), or equivalently S ∩ (−S) = (0). Let I be the ideal relative to a
fix Λ = {m1, . . . ,mn} a generating set of S. Notice that I is S-graded because
ϕ0 is an S-graded morphism of degree zero, considering k[S] with the natural
S-grading and k[X] as an S-graded ring, assigning the degree mi to Xi. The
condition S ∩ (−S) = (0) says that k[S]m, the homogeneous elements of degree
m ∈ S in k[S], is a k-vector space of finite dimension (see [8]).

Another application of the condition S ∩ (−S) = (0), is Nakayama’s lemma
for S-graded k[X]-modules (see [8]). Thus, there exists the S-graded free reso-
lution of k[S], unique regarding isomorphisms. We denote such resolution

0→ k[X]bp
ϕp→ · · · → k[X]b2

ϕ2→ k[X]b1
ϕ1→ k[X]

ϕ0→ k[S]→ 0,

and Ni = ker(ϕi) the ith module of syzygies 0 ≤ i ≤ p (N0 = I).
Notice that

bi+1 = dim(Ni/mNi),

where Ni/mNi is considered as a k-vector space. Moreover, since this space is
S-graded, if Vi(m) := (Ni/mNi)m, where m ∈ S, then

bi+1 =
∑
m∈S

dimVi(m).

The Auslander-Buchbaum theorem guarantees that

p = n− depthk[X]k[S],

where depthk[X]k[S] is the depth of k[S] as k[X]-module. It is known that
depthk[X]k[S] is bounded by dimk[S], which is the rank of the abelian group
G(S). In the case the bound is reached, k[S] is a Cohen-Macaulay ring. Thus,
this case will be called Cohen-Macaulay case. On the other hand, if S 6= {0}, it
is satisfied that depthk[X]k[S] ≥ 1.
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Assume that rank(G(S)) = d, let V = G(S)
⊗

Z
Q, and let C(S) be the

cone generated by the image S̄, of S in V . The cone C(S) is strongly convex
because S ∩ (−S) = (0). Thus, if f is the number of extremal rays of C(S),
then f ≥ d. This implies that there exists a set E ⊂ Λ with ]E = f, such that
C(E) = C(S), where C(E) is the cone in V (S) generated by E. Fix such a set
E and A = Λ \ E, ]A = n− f = r.

The Apery set Q of S relative to E is defined as

Q = {q ∈ S | q − e 6∈ S, ∀e ∈ E}.

Denote k[E] the subalgebra of k[S],

k[E] =
⊕
m∈SE

kχm,

where SE is the subsemigroup of S generated by E. Let k[XE ] the polynomial
ring in the f indeterminates associated with E. k[XE ] can be projected over
k[E], it is enough to associate to the indeterminate Xi the symbol χmi , for any
mi ∈ E.

k[S] is a k[E]-module, and therefore also a k[XE ]-module. The set

{χq | q ∈ Q},

is a minimal system of generators of k[S] as k[E]-module, and therefore, also
as k[XE ]-module. Since k[XE ] is noetherian, Q is a finite set. Suppose that
β0 = ]Q, Q = {q1, . . . , qβ0}, and consider

Φ0 : k[XE ]β0 −→ k[S]

defined by Φ0(ei) = χqi , 1 ≤ i ≤ β0. We can consider the S-graded minimal
resolution of k[S] as k[XE ]-module

0→ k[XE ]βq
Φq→ · · · → k[XE ]β2 Φ2→ k[XE ]β1 Φ1→ k[XE ]β0 Φ0→ k[S]→ 0,

which is unique except isomorphisms. We denoteMi = ker(Φi) the ith module of
syzygies of k[S] as k[XE ]-module, 0 ≤ i ≤ q. As before, by S-graded Nakayama’s
lemma, we obtain

βi+1 =
∑
m∈S

dimWi(m),

where Wi(m) := (Mi/mEMi)m is consider as a k-vector space, and mE is the
ideal of k[XE ] generated by the indeterminates of XE (Xi such that mi ∈ E).

Now, we will call the S-graded minimal free resolution of k[S] as k[X]-module
the long resolution, and the short resolution the S-graded minimal free resolution
of k[S] as k[XE ]-module.
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2 Combinatorial description of the long resolu-
tion

Assume that S 6= (0), and consider the S-graded minimal free resolution,

0→ k[X]bp
ϕp→ · · · → k[X]b2

ϕ2→ k[X]b1
ϕ1→ k[X]

ϕ0→ k[S]→ 0.

For any m ∈ S we define the simplicial complex:

∆m = {F ⊂ Λ | m− nF ∈ S},

where nF =
∑
m∈F m. (These simplicial complexes are inspired in some graphs

of [45].) Let H̃i(∆m) be the k-vector space of the ith- reduced homology of ∆m,
and h̃i(∆m) = dim(H̃i(∆m)).

There exists an effective isomorphism

(∗) H̃i(∆m) ' Vi(m),

for any m ∈ S and for any i, 1 ≤ i ≤ n− 2, (for details see [15],[17] and [7], or
also [1]). These isomorphisms are a bridge between Combinatoric and Algebra.
For example, notice that the numbers bi in the long resolution can be described
by the following formula

bi+1 =
∑
m∈S

h̃i(∆m).

Another example, k[X] is Cohen Macaulay if and only if one has H̃n−d(∆m) = 0
for every m ∈ S, where d = rank G(S). If k[X] is Cohen Macaulay then the
Cohen Macaulay type τk[X] of k[X] is given by

τk[X] =
∑
m∈S

h̃n−d−1(∆m).

Thus, in particular, k[X] is Gorenstein if and only if k[X] is Cohen Macaulay
and if H̃n−d−1(∆m) 6= 0 exactly for one m for which, moreover, one has
h̃n−d−1(∆m) = 1. The formula for τk[X] follows from the fact that τk[X] = bn−d
in the Cohen Macaulay case. Moreover, it is possible to generalize the well
known characterization of Gorensteiness for numerical semigroups due to Kunz
[32]. To state the result, notice that ∆m makes for m ∈ G(S). It is clear that
for m ∈ G(S) − S, ∆m is the empty simplicial complex and therefore one has
H̃i(∆m) = 0 for such an m and i = −1, 0, 1, 2. Also notice that ∆0 is the only
complex among the ∆m’s with the property H̃−1(∆m) 6= 0 (in fact it is a one
dimensional space). Finally set H̃i(∆m) = 0 for i ∈ Z, i < −1, and m ∈ G(S).
From the symmetry of the graded resolution in the Gorenstein case, if R is
Gorenstein and let m ∈ S be the element such that H̃n−d−1(∆m) 6= 0, then for
any couple of elements m1,m2 ∈ G(S) with m1 +m2 = m and i ∈ Z one has

H̃i(∆m1) ' H̃n−d−i(∆m2).
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(See [7] for details).
In the case of a numerical semigroup, if c is the least element, such that

m ∈ S for any m ≥ c, then H̃i(∆m) = 0 for any m ≥ c+nΛ−1 and any i, because
∆m is the full simplex. Therefore, if S is symmetric, the above isomorphism
implies that the matrix {H̃i(∆m)}i,m is a symmetric matrix. (This particular
case was proved in [15])

Another important application of these isomorphisms is the construction of
minimal generating sets of syzygies. Notice that

S(i) := {m ∈ S | H̃i(∆m) 6= 0}, n− 2 ≥ i ≥ 0,

is the set of S-degrees for the minimal i-syzygies. The notherian property guar-
antees that S(i) is a finite set, therefore the following construction provides a
method for computing a minimal generating set of Ni.

CONSTRUCTION:
STEP 1: Compute S(i).
STEP 2: For any m ∈ S(i), take the images of the elements in a basis for the
i-reduced homology space H̃i(∆m) by the isomorphism.

Step 1 is completely solved in [12], but the partial solution for i = 0 appears
in [8], and for i = 1 in [41]. Step 2 is solved with an algorithmic method in [7]
(Remark 3.6).

The case i = 0 corresponds to the ideal I = N0. In this case, step 1 is
equivalent to determine the element m ∈ S such that ∆m is non-connected.
These elements are characterized by the concept of to be m-isolated ([17]) given
by there arithmetical conditions. Concretely:

Let m ∈ S, and let B = {i1, ..., ip} ⊂ C ⊂ Λ, C 6= Λ. We shall say B is
m-isolated from Λ− C if:

1. It is possible to write

m =
p∑
j=1

γijnij =
∑
t6∈C

ρtnt,

where γij , ρt ∈ N, and 0 < γij for any j, 1 ≤ j ≤ p.

2. If there exists m′ ∈ S such that it is possible to write

m′ =
p∑
j=1

γ′ijnij =
∑
t6∈B

ρtnt,

where γ′ij , ρt ∈ N, γ′ij 6= 0, and where there exists t 6∈ C such that ρt 6= 0,
then

(γ′i1 , ..., γ
′
ip) 6< (γi1 , ..., γip).

3. If B′ = {l1, ..., ls} ⊂ B and there exists m′ ∈ S such that it is possible to
write

m′ =
s∑
j=1

γ′ljnlj =
∑
t6∈B′

ρtnt,
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where γ′lj , ρt ∈ N, and where there exists t 6∈ C such that ρt 6= 0, then

(γ′l1 , ..., γ
′
ls) 6≤ (γl1 , ..., γls).

The following theorem is obtained:

Theorem 2.1. ([17]) Let m ∈ S, the following conditions are equivalents:
1: ∆m is non-connected (H̃0(∆m) 6= 0).
2: There exists C ⊂ Λ, such that:

• C = ∪gj=1Tj.

• Tj is m-isolated from Λ− C, for any j.

• Tj ∩ Tj+1 6= ∅, for any j, 1 ≤ j ≤ g − 1.

This characterization allows us to find the particular solutions given for few
generators in the numerical case in [29] (n=3), [6] and [38] (n=4), and [16]
(n=5). Moreover, by means of new combinatorial elements, the theorem yields
an algorithm. Concretely, the vertices of some ladders, or equivalently, the
Hilbert bases of some diophantine systems are used. (See [8] for details)

The case i = 1 is solved in [41] by construction of a finite set containing
S(1). This set is obtained after studying the non-null spaces H̃1(∆m) 6= (0).
The concept of F -cavity in ∆m allows us to associate with S some diophantine
systems. The Hilbert bases of these systems provide a check finite set. This
technique is generalized in [12] for i ≥ 2 . A new concept is necessary, the
i-triangulation in ∆m.

3 Combinatorial description of the short resolu-
tion

Assume that S 6= (0), and consider the S-graded minimal free resolution of k[S]
as k[XE ]-module

0→ k[XE ]βf−1
Φf−1→ · · · → k[XE ]β2 Φ2→ k[XE ]β1 Φ1→ k[XE ]β0 Φ0→ k[S]→ 0.

We will show how this resolution can be described by means of other sim-
plicial complexes. Concretely, if m ∈ S, let Tm be the simplicial complex

Tm = {F ⊂ E | m− nF ∈ S}.

Denote H̃i(Tm) the ith reduced homology space of the simplicial complex Tm,
and let h̃i(Tm) = dim(H̃i(Tm)). We will prove that there exists an isomorphism

(∗∗) H̃i(Tm) 'Wi(m),
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for any m ∈ S and for any i, 1 ≤ i ≤ f − 2. For this, let us consider k[S]
and k ' k[XE ]/mE as k[XE ]-modules and use the commutativity of the functor
Tor, concretely

Tori+1(k[S], k) ' Tori+1(k, k[S]).

In order to compute the space Tori+1(k[S], k) as k[XE ]-module, take the Koszul
complex for the regular sequence {Xi | mi ∈ E}, which is a exact sequence.
For simplicity, we assume that E = {m1, . . . ,mf}.

0→
f∧
k[XE ]f

df−1→ · · · →
j+1∧

k[XE ]f
dj→

j∧
k[XE ]f

dj−1→ · · · → k[XE ]f d0→ k[XE ]→ k → 0.

Here dj is given by

dj(ei0 ∧ · · · ∧ eij ) =
j∑
l=0

(−1)lXl ei0 ∧ · · · ∧ eil−1 ∧ eil+1 ∧ · · · ∧ eij .

These homomorphism are S-graded of degree 0 assigning the degree mi0 + · · ·+
mij to the element ei0 ∧· · ·∧eij . Tensoring this exact sequence with the k[XE ]-
module k[S], we obtain the S-graded Koszul complex

0→
f∧
k[S]f → · · · →

j+1∧
k[S]f

dj→
j∧
k[S]f

dj−1→ · · · → k[S]f d0→ k[S]→ k → 0.

The restriction to its degree m ∈ S is the following complex of finite-dimensional
k-vector space

· · · →
⊕
F⊂E
]F=3

k[S]m−nF →
⊕
F⊂E
]F=2

k[S]m−nF→
⊕
F⊂E
]F=1

k[S]m−nF→k[S]m → 0.

Notice that this complex can be identified with the augmented oriented chain
complex of Tm, because

k[S]m−nF =
{
k, if F ∈ Tm
0, otherwise

Thus, we obtain that

(Tori+1(k[S], k))m ' H̃i(Tm).

In order to compute Tori+1(k, k[S]) as k[XE ]-modules, take the S-graded min-
imal free resolution of k[S] as k[XE ]-module. Tensoring with k ' k[XE ]/mE it
is obtained

0→ (k[XE ]/mE)βf−1 Φ̃f−1→ · · · → (k[XE ]/mE)β2 Φ̃2→ (k[XE ]/mE)β1 Φ̃1→ (k[XE ]/mE)β0 → 0.

Thus, (Tori+1(k, k[S]))m 'Wi(m).
Now it is clear that the isomorphism (∗∗) follows from the commutativity of

the functor Tor.
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As an application of these isomorphisms, if denote

D(i) := {m ∈ S | H̃i(Tm) 6= 0},

we obtain that
βi+1 =

∑
i∈D(i)

h̃i(Tm), 0 ≤ i ≤ f − 2.

Notice that, by the noetherian property, D(i) is finite.
In [10] is shown how the setsD(i) can be obtained generalizing the techniques

used for computing S(i) in [12]. This process will be recalled in section 5.

4 Relationship between the two resolutions

The objective of this section is to explain how the simplicial complexes Tm and
∆m are related, and therefore their reduced homology. To find this relationship,
following [14], we need to introduce new combinatorial objects.

• For any m ∈ G(S) and l ≥ −1, denote by Cl(Qm) the vector space which
has the set

{L ⊂ A | ]L = l + 1,m− nL ∈ Q}

as a basis.

• For any chain z in Cl(Qm), denote by

θl(z) the projection on Cl−1(Qm) of the simplicial boundary of z.

{C•(Qm), θ•} is a chain complex for any m ([14]). To understand better the
homology of this complex, consider, for any m ∈ S, the following subset of Σ:

Km = {L ∈ ∆m | (L ∩ E 6= ∅) or (L ⊂ A and m− nL ∈ S −Q)}.

It is easy to check that Km is a simplicial subcomplex of ∆m, so that one can con-
sider the chain complex C̃•(Km) and the relative chain complex C̃•(∆m,Km).

Notice that, by construction, one has an identification C•(Qm) ' C̃•(∆m,Km).
If m ∈ Q, then one has that C•(Qm) ' k and Km = ∅. Otherwise, if m ∈ S \Q,
since ∃e ∈ E such that m− e ∈ S, one obtains L = {e} ∈ Km and Km 6= {∅}.
Therefore, H̃−1(Km) = 0 for any m ∈ S. This allows us to deduce, from the
exact sequence of complexes,

0→ C̃•(Km)→ C̃•(∆m)→ C•(Qm)→ 0,

that there is a long exact sequence of homology,

...→ Hl+1(Qm)→ H̃l(Km)→ H̃l(∆m)→ Hl(Qm)→ ...

...→ H̃0(Km)→ H̃0(∆m)→ H0(Qm)→ H̃−1(Km) = 0→

H̃−1(∆m)→ H−1(Qm)→ 0.
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Now, in order to understand the homology H̃•(Km), let us consider the
simplicial complex given by the following disjointed union of subsets of Σ:

Km := Km∪{I∪J, I ⊂ A, J ⊂ E | m−nI−nJ /∈ S and m−nI−e ∈ S, ∀e ∈ J}.

Notice that any I ∪ J in the second set of the above union is such that the
cardinality of J is at least 2. The complex Km is acyclic, i.e. H̃l(Km) = 0
for any l ≥ −1 (see Corollary 2.1 in [14]). Thus, the long exact sequence of
homology coming from the exact sequence of chain complexes

0→ C̃•(Km)→ C̃•(Km)→ C̃•(Km,Km)→ 0

gives rise to an isomorphism ρl+1 : H̃l+1(Km,Km)→ H̃l(Km), for every l ≥ −1.
To study the homology H̃•(Km,Km) let us consider, the chain of simplicial

complexes
Km = M(−1)

m ⊂M(0)
m ⊂M(1)

m ⊂ ... ⊂M(r)
m = Km

where M(i)
m , −1 ≤ i ≤ r, is the simplicial subcomplex of Km given by:

M(i)
m := Km ∪ {L = I ∪ J ∈ Km | I ⊂ A, J ⊂ E, and ]I ≤ i}.

Now, H̃•(Km,Km) can be computed (see [14]) by means of the long exact
sequences

...→ H̃l(M(j)
m ,M(i)

m )→ H̃l(M(k)
m ,M(i)

m )→ H̃l(M(k)
m ,M(j)

m )→ ....

for −1 ≤ i < j < k ≤ r. In fact, to compute H̃•(Km,Km) = H̃•(M
(r)
m ,M(−1)

m ),
it will be enough to use the above exact sequences for the concrete values of
(i, j, k) given by (−1, 0, 1), (−1, 1, 2), ..., (−1, r− 1, r), and take into account the
following result which is obvious by construction (see proposition 4.3 in [14]).

From these sequences, for any m ∈ S, one has (see Proposition 3.2 in [14]):
for any l ≥ −1 and any i, 0 ≤ i ≤ r,

H̃l+1(M(i)
m ,M(i−1)

m ) '
⊕

I⊂A,]I=i

H̃l−i(Tm−nI
)

(in this formula, H̃l−i(Tm−nI
) = 0 if either l + 1 < i or m− nI /∈ S).

A first application of above formula is that S(i) ⊂ Ci, where

Ci = {m ∈ S |m = m+nF , withm ∈ D(t) and F ⊂ A, ]F = i−t, for some t ≥ −1}.

Therefore, in order to determine the set S(i) it is enough to compute D(t) for
any t, −1 ≤ t ≤ min(i, f − 2). Notice that this result allows us to construct the
long resolution from the short one.

Other applications are obtained in the case of the ideal I is homogeneous
for the natural grading. This case is called projective case, because the ideal I
defines a toric projective variety (see for example [48]).

A characterization of when the ideal I is homogeneous is the following:
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Proposition 4.1. ([10]) I is homogeneous for the natural grading if and only
if there exists w ∈ Qd such that w · π(mi) = 1, for any i = 1, . . . , n.

Here we are supposing that

G(S) = Zd ⊕ Z/a1Z⊕ · · · ⊕ Z/asZ,

with ai ∈ Z non null, 1 ≤ i ≤ s, n = d+ s, and that π is the projection over the
first coordinates

π : Zd+s −→ Zd.

Assume that I is a homogeneous ideal. In this case, it is well defined ||m|| =
||α||1, where m =

∑n
i=1 αimi and ||α||1 =

∑n
i=1 αi.

It is well-known (see, for example, [3]) that the regularity of I is

reg(I) = max0≤i≤n−2{ti − i},

where ti is the maximum degree of the minimal i-syzygies of I, i.e. ti =
max{||m|| | m ∈ S(i)}.

Using the exact sequences associated with the filtration {M (j)
m }, the following

formula is obtained.

Theorem 4.2. ([10])

reg(I) = max−1≤i≤f−2{ui − i},

where ui = max{||m|| | m ∈ D(i)}.

Therefore, one can read the regularity in the short resolution, it is not nec-
essary to use the large one.

Another result obtained using these techniques is an effective upper bound
for the degrees of the equations defining toric projective varieties. Concretely,
let L : S → N be the map defined by L(m) = ||m||. For any t ≥ 0, let
Ht := {m ∈ S | L(m) = t}, and denote

Qt := Q ∩Ht,

and
t0 := min{t | Qt = ∅}.

On the other hand, from the above sequences, making substitutions of the for-
mulas of homology, the following map is obtained⊕

a∈A
H̃0(Tm−a)

ϕm→ H̃0(Tm).

Let
t1 := min{t | coker(ϕm) = 0 ∀m ∈ Ht},

i.e. the minimum t ∈ N such that ϕm is surjective for every m ∈ Ht.

Theorem 4.3. ([9]) An effective upper bound for the degrees of the polynomials
in a minimal generating set of the equations of a toric projective variety is
max(t0, t1).
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5 i-Triangulations

The objective of this section is to describe how the sets S(i), 0 ≤ i ≤ n − 2,
and D(i), 0 ≤ i ≤ f − 2, can be obtained solving diophantine systems in non
negative integers.

Notice that D(−1) = Q, and since C(E) = C(S) for any element a ∈ A
there exists qa ∈ N such that

qa · a =
∑
e∈E

λe · e

with λe ∈ N. Therefore, Q can be obtained checking whether the elements
m =

∑
a∈A λa · a, with λa < qa, are in Q.

For solving the other cases, we need the concept of i-triangulation in a
simplicial complex. Let ∆ be an abstract simplicial complex with vertices over
a finite set V.

The reduced i-homology of the simplicial complex ∆ is the k-vector space

H̃i(∆) = Z̃i(∆)/B̃i(∆),

where Z̃i(∆) and B̃i(∆) are the spaces of cycles and boundaries respectively.
Let i ≥ 0 and F ⊂ V. We will say that τ = {F1, . . . , Ft} is an i-triangulation

of F if the following properties are satisfied:

1. ]Fj = i+ 1, ∀j = 1, . . . , t.

2. F =
⋃t
j=1 Fj .

We will say that τ is an i-triangulation of F in ∆, if Fj ∈ ∆, ∀j = 1, . . . , t, and
F /∈ ∆.

If H̃i(∆) 6= 0, then there is c ∈ Z̃i(∆) − B̃i(∆), c =
∑t
j=1 λjFj , such that

τ = {F1, . . . , Ft} is an i-triangulation of F in ∆, for F =
⋃t
j=1 Fj .

In the cases ∆ = ∆m ó Tm, V = Λ ó E respectively, if F ⊂ V , and τ =
{F1, . . . , Ft} is a i-triangulation of F, in ∆m ó respectively in Tm, we can asso-
ciate with τ a diphantine system solution. Concretely, let G be the matrix whose
columns are the chosen generators of S, G := (m1| . . . |mn) ∈M(d+s)×n(Z), con-
sidering the mi as elements in Zd+s, and let

G(t) :=


G −G 0 0 0 0 0
0 G −G 0 0 · · · 0 0
0 0 G −G 0 0 0

. . . . . . . . .
0 0 0 0 0 G −G

 ∈M(d+s)(t−1)×nt(Z).

Denote by eFl
∈ Nn the vector with all its coordinates zero except those

indicated in the set Fl. Let eτ := (eF1 , . . . , eFt) ∈ Nnt and let

Rτ := {α = (α(1), . . . , α(t)) ∈ Nnt | G(t)α = 0 , α� eτ},

13



where � is the natural partial order in Nnt. Since τ is a triangulation of F in
∆m (respectively Tm), there is α ∈ Rτ such that Gα(1) = · · · = Gα(t) = m ∈ S.

Notice that Rτ doesn’t depend on m. Therefore, given F ⊂ V , and τ =
{F1, . . . , Ft} a i-triangulation of F, we can consider the set Rτ and the set

ΣRτ := {m ∈ S | m = Gα(1), for any α = (α(1), α(2), . . . , α(t)) ∈ Rτ}.

The elements m ∈ S such that τ is i-triangulation of F in ∆m ó respectively in
Tm are in ΣRτ . We need to be more precise and to give a finite subset of ΣRτ
with the same property. For this, we consider

HRτ := {α ∈ Rτ | α is minimal for �},

which is finite, and

ΣHRτ := {m ∈ S | m = Gα(1), for any α = (α(1), α(2), . . . , α(t)) ∈ HRτ}.

In the case of the complexes ∆m, one has that ([40])

S(i) ⊂
⋃

F⊂Λ, ]F≥i+2

⋃
τ

ΣHRτ .

In the case of the complexes Tm, we also need to consider the set Q. In
both cases, there is a partial order which refines the final result. The order is
different in each case. Concretely:

• m >S m
′ if m−m′ ∈ S.

• m >Q m′ if m−m′ ∈ S \Q.

Moreover, ifH ⊂ S, we will say thatm ∈ H is S−minimal (resp. Q−minimal)
in H if m ≥S m′ (resp. m ≥Q m′), with m′ ∈ H, implies that m = m′.

Let
Cτ := {m ∈ ΣRτ | m is S-minimal in ΣRτ},

and Mτ := {m ∈ ΣRτ | m is Q−minimal in ΣRτ}.
Cτ is finite because Cτ ⊂ ΣHRτ (see [12] for details). Mτ is finite because

Mτ ⊂ ΣHRτ +Q (see [10] for details).
The relation of the elements in S(i) (resp. D(i)) and Cτ (resp. Mτ ) is the

following: If m ∈ S(i) (resp. m ∈ D(i)), then there exists τ = {F1, . . . , Ft}
i−triangulation of F = ∪j=1,... ,tFj such that m ∈ Cτ (resp. m ∈ Mτ ). (See
[12] and resp. [10] for details.)

Thus, if

C ′τ := {m ∈ Cτ |F /∈ ∆m}, and Ci(F ) :=
⋃
τ

C ′τ ,

and if
M ′τ := {m ∈Mτ |F /∈ Tm}, and Mi(F ) :=

⋃
τ

M ′τ ,

we obtain the following theorem which provides an algorithm to compute the
sets S(i) and D(i) (see [12] and [10] for details).

14



Theorem 5.1. The elements m ∈ S such that the simplicial complex ∆m, re-
spectively Tm, has ith reduced homology non null can be determined solving
diophantine systems. Concretely,

• S(i) ⊂
⋃
F⊂Λ, ]F≥i+2 Ci(F ), 0 ≤ i ≤ n− 2.

• D(i) ⊂
⋃
F⊂E, ]F≥i+2Mi(F ), 0 ≤ i ≤ f − 2.

As an application, we obtain an explicit bound for the degree of the ith
minimal syzygies.

Proposition 5.2. ([11]) Let m ∈ S be the degree of a ith minimal syzygy,
0 ≤ i ≤ n− 2. There is x, such that m = Gx with

||x||1 ≤ r (1 + 2 max |aj |+ ||G||)(d+s)+(1 + 2 max |aj |+ 4||G||)(d+s)(c−1)+(i+1)(c+1)−1,

where c =
(

f
bf/2c

)
, and ||G|| := supl

∑
j |glj |.

Moreover, in the homogeneous case, the regularity is bounded.

Theorem 5.3. ([11])

reg(I) ≤ r (1 + 2 max |aj |+ ||G||)(d+s)+(1 + 2 max |aj |+ 4||G||)(d+s)(c−1)+(f−1)(c−1).

Notice that these bounds are singly-exponential in the number of extremal
rays. Therefore, they are an improvement of the well-known singly-exponential
in the number of generators given in [49].

6 Computing with Gröbner Bases

As was explained in section 2, the method porpoused in section 5 for computing
the sets S(i), allows us to obtain the minimal free resolution of k[S] as k[X]-
module, which we have called the long resolution. In [51] are some explicitied
examples.

Using the sets Ci defined in section 4, it is possible to change slightly the
method and computing the sets S(i) from the sets D(t) with −1 ≤ t ≤ i (see [10]
for details). The advantage of this change appears when the cardinality of E is
strictly less than the cardinality of Λ. In this case, the number of diophantine
systems which one must solve decreases. However, even with this improvement,
the obtained method is not faster than the method which employs Gröbner
bases.

To compute the long resolution of k[S] using Gröbner bases, one must begin
computing the ideal I. There exist several methods to do this. Two of them, [23]
and [31], are an improvement on the usual method using Elimination Theory
(see [48]). These papers consider only the free torsion case. The generalization
to non trivial torsion appears in [50]. The advantage of these methods is that
they do not need to add new variables like the Elimination theory requires for
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this concrete problem. An application of these methods is the computing of
Hilbert bases of diophantine equations (see [42]), even in the case of equations
with congruences (see [41]).

Once a generating set of I is obtained, {f1, . . . , fr}, we can consider the
morphism of free k[X]-modules

ϕ : k[X]r −→ k[X],

defined by ϕ(ei) = fi.
Using the Schreyer Theorem and its improvements (see for example [33]),

we can obtain a generating set of ker(ϕ), {F1, . . . , Fs}. This method consists of
computing a Gröbner basis.

Notice that the generating set {f1, . . . , fr} is minimal if and only if there is
no coordinate of Fi in k, for any i, 1 ≤ i ≤ s. Moreover, in the case {f1, . . . , fr}
non minimal, we can remove the redundant elements, using the relations given
by the Fi which have a coordinate in k.

Therefore, we can suppose that {f1, . . . , fr} is a minimal generating set of
I. Thus, r = b1, ϕ = ϕ1 and N1 is generated by {F1, . . . , Fs}.

Now, we can consider the morphism of free k[X]-modules

ϕ′ : k[X]s −→ k[X]b1 ,

defined by ϕ′(ei) = Fi. Using again the Schreyer Theorem, we can compute a
generating set of ker(ϕ′). Similar reasonings to the previous case yield a minimal
generating set of N1 contained in {F1, . . . , Fs}. This way, we can compute
the long resolution. In fact, some Formal Calculus Systems, as Macaulay2 or
Singular, have installed this algorithm, even with some improvements (see [33]).
From the long resolution one can read the sets S(i).

In order to compute the S-graded minimal free resolution of k[S] as k[XE ]-
module with Gröbner bases, we must begin by computing the Apery set, Q. For
details see [39].

Assume, for the sake of simplicity, E = {m1, . . . ,mf} andA = {mf+1, . . . ,mn}.
Fix a total order on the monomials of k[X] = k[XE ,XA], X1 < X2 < · · · <

Xn, such that:

1. Xα < Xβ , implies Xα+γ < Xβ+γ , for any α, β and γ;

2. If f =
∑
aαXα ∈ k[X] has the leading monomial Xβ 6∈ k[XA], then

Xα 6∈ k[XA], for any α with aα 6= 0.

For example, we can consider the lex− inf order, which is defined

α >lex−inf β ⇐⇒ α <lex β,

where lex order is the lexicografic order for X1 > · · · > Xn.
Any order with these properties is not a well-ordering. However, since there

exists only a finite number of monomials os S-degree m ∈ S, a Gröbner basis
of I can be computed from any S-graded generating set of I. Assume that Γ is
the reduced Gröbner basis of I for such a order. Let B be the set of monomials
Xα
A which are not divisible by any leading monomial of Γ.
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Lemma 6.1. ([39])

Q = {m ∈ S | m =
n∑

i=f+1

αimi, where Xα
A ∈ B},

and in particular, the set B is finite.

Any element in Γ whose leading monomial Xv
EXu

A has variables in {Xi | 1 ≤
i ≤ f} (i.e. v 6= 0), is , except sign ±,

Xv
EXu

A −Xv′

EXu′

A ,

where v′ 6= 0, and Xu
A,X

u′

A ∈ B, u 6= u′. Suppose that Xu
A and Xu′

A are
associated with the elements qi and qj ∈ Q respectively. We associate to the
element in Γ, the element in k[XE ]β0 with all the coordinates equal to zero,
except the ith and jth ones, which are Xu

A, and −Xu′

A respectively.
In this way, if l1 is the number of element in Γ of the above form, we obtain

Gi elements in k[XE ]β0 , 1 ≤ i ≤ l1. Let M be the matrix

M = (G1| . . . |Gl1).

M defines a morphism of free k[XE ]-modules

Ψ1 : k[XE ]l1 −→ k[XE ]β0 .

Proposition 6.2. ([39])

coker(M) 'k[XE ] k[S].

Therefore, we obtain the first step of a free resolution of k[S] as k[XE ]-
module that is S-graded.

k[XE ]l1 Ψ1→ k[XE ]β0 Φ0→ k[S]→ 0.

Now, in order to obtain the short resolution, it is enough to apply the
Schreyer Theorem as we explain at the beginning of this section. Notice that
the sets D(i) can be read from the short resolution.

7 The hull resolution of a lattice ideal

Let L ⊂ Zn be a lattice, such that L ∩ Nn = {0}.
We consider the lattice k[X]-module

M = ML = k[X]{Xa | a ∈ L} = k{Xb | b ∈ L+ Nn},

submodule of k[X±] = k[X±1
1 , . . . ,X±n ].

For a ∈ Zn and t ∈ R we denote ta = (ta1 , . . . , tan).
Fix any real number t larger than (n+ 1)! = 2 · 3 · · · (n+ 1).

17



Let Pt be the convex hull of the point set {ta | Xa ∈ M}. From the proof
of Lemma 2.1 in [4] follows that

Pt = conv{ta | a ∈ L}+ Rn+.

Moreover, the vertices of the polyhedron Pt are precisely the points ta for which
a ∈ L (see proof of Proposition 2.2 in [4]).

We denote X the cellular complex ([13])whose facets are the bounded faces
of Pt. X doesn’t depend of t (Theorem 2.3 in [4]). Since Pt is an unbounded
n-dimensional convex polyhedron, the dimension of X is at most n − 1. X is
called the hull complex of M in [4], and it is represented by X = hull(M).

Let F be a nonempty face of X. We identify F with its set of vertices, a
finite set of L. Set mF := lcm{m ∈ F}.

Notice that if F ∈ X, then F + b ∈ X, for any b ∈ L. We take an incidence
function satisfying

ε(F, F ′) = ε(F + b, F ′ + b), for any b ∈ L.

We denote FX the chain complex of k[X]-modules given by⊕
F∈X
F 6=∅

k[X] · eF
∂−→
⊕
F∈X
F 6=∅

k[X] · eF , ∂eF =
∑
F ′∈X
F ′ 6=∅

ε(F, F ′)
mF

mF ′
eF ′ .

This chain complex is a free resolution of M (Theorem 2.5 in [4]), called the
hull resolution of M .

We define the following equivalence relation between the faces of X:

F ∼ F ′ if F ′ = F + b for some b ∈ L.

If F ∈ X, F 6= ∅, we choose Rep(F ) one face in X such that F ∼ Rep(F ) and
0 ∈ Rep(F ).

Let
Rep(X/L) := {Rep(F ) | F ∈ X, F 6= ∅}.

The set Rep(X/L) is finite because if {t0, ta} is an edge of X, then a is a
primitive vector in L. Recall that if a ∈ L, a = a+ − a− with a+ and a− two
nonnegative vectors with disjoint support. A nonzero vector a ∈ L is called
primitive if there is no vector b ∈ L \ {a, 0} such that b+ ≤ a+ and b− ≤ a−.
The set

{Xa+
−Xa− | a ∈ L is primitive}

is called the Graver basis of the ideal IL. It is well-known that the Graver basis
of IL, equivalently the set of primitive vector of L, is finite (Theorem 4.7 in
[48]).

We consider the k[X]-module morphism

Rep :
⊕
F∈X
F 6=∅

k[X] · eF −→
⊕

F∈Rep(X/L)

k[X] · eF ,
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defined by Rep(eF ) = eRep(F).
The chain complex of k[X]-modules given by⊕
F∈Rep(X/L)

k[X] · eF
∂∗−→

⊕
F∈Rep(X/L)

k[X] · eF , ∂∗(eF ) = Rep(∂eF ),

is a free resolution of k[X]/IL (It follows from Corollary 3.7 in [4]). This free
resolution is called the hull resolution of IL.

The hull resolution can be non minimal. For example, if L corresponds to
a monomial curve in A3(k), then for Cohen-Macaulay case, the hull resolution
is not minimal, and for non Cohen-Macaulay case the hull resolution is the
minimal resolution. It is an open problem to classify the numerical semigroups
(even with four generators) whose hull resolution is minimal.

However, for some particular classes of lattice L is proved that the hull
resolution is minimal. For example, for generic lattice ideals [37]. This class
of lattice ideals are the ideals IL generated by binomials with full support.
Theorem 2.9 in [4] proves in particular that the hull resolution of a generic
lattice is the minimal resolution.

Another example is the unimodular Lawrence ideals. The Lawrence ideal
associated to a L is the ideal

JL = (XaYb −XbYa | a− b ∈ L) ⊂ k[X,Y],

see [48] and [5]. (A combinatorial study of the Lawrence ideals is in [43].)
The ideal JL is unimodular if for the sublattice L satisfies the following six

equivalent conditions (Theorem 1.2 in [2]):

1. The Lawrence ideal JL possesses an initial monomial ideal which is radical.

2. Every initial monomial ideal of Lawrence ideal JL is a radical ideal.

3. Every minimal generator of the JL is a difference of two squarefree mono-
mials.

4. The lattice L is the image of an integer matrix B with linearly independent
columns, such that all maximal minors of B lie in the set {0, 1,−1}.

5. The lattice L is the kernel of an integer matrix A with linearly independent
rows, such that all maximal minors of A lie in {0,m,−m} for some integer
m.

6. The quotient ring k[X]/JL is a normal domain.

Theorem 3.8 in [2] shows that the hull resolution of the unimodular Lawrence
ideal agrees with the minimal free resolution.
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