PREPUBLICACIONES DE LA FACULTAD DE MATEMÁTICAS DE LA UNIVERSIDAD DE SEVILLA

Quelques propriétés de la V-filtration relative à un diviseur libre

Francisco Calderón Moreno

Prepublicación nº 32 (Enero-1996)

Sección Álgebra, Computación, Geometría y Topología

Quelques propriétés de la V-filtration relative à un diviseur libre

Francisco J. Calderón Moreno*

Résumé – On montre un théorème de structure pour les opérateurs différentiels dans le terme 0 de la V-filtration relative à un diviseur libre. Comme application, on donne une formule pour le complexe de De Rham logarithmique en termes de V_0 -modules, qui généralise la formule classique pour le complexe de De Rham usuel en termes de \mathcal{D} -modules et celle de Esnault-Viehweg dans le cas d'un diviseur à croisements normaux.

Abridged english version.-

Let X be a complex analytic manifold of dimension n and $Y \subset X$ a hypersurface. In section 1 we introduce the basic concepts. We say that Y is free [10] if the sheaf $\mathcal{D}\text{er}(\log Y)$ of the logarithmic derivations with respect to Y is a locally free \mathcal{O}_X -module (of rank n), or, what is the same, if the sheaf $\Omega^1_X(\log Y)$ of the logarithmic 1-forms is a locally free \mathcal{O}_X -module (of rank n). As in the case of Y smooth, we can consider the Y-filtration, relative to Y, over the sheaf \mathcal{D}_X of linear differential operators on X. We shall denote by $\mathcal{V}^Y_{\bullet}(\mathcal{D}_X)$ this filtration. The sheaf $\mathcal{V}^Y_0(\mathcal{D}_X)$ is a \mathcal{O}_X -subalgebra of \mathcal{D}_X containing $\mathcal{D}\text{er}(\log Y)$.

In section 2 we study the sheaf $\mathcal{V}_0^Y(\mathcal{D}_X)$ in case that Y is a free divisor. Our first result (theorem 2.1) tells us that, if Y is free, then $\mathcal{V}_0^Y(\mathcal{D}_X) = \mathcal{O}_X[\mathcal{D}\mathrm{er}(\log Y)]$. More precisely (theorem 2.3), the natural morphism $\alpha_X : \mathcal{S}ym_{\mathcal{O}_X}(\mathcal{D}\mathrm{er}(\log Y)) \to \mathcal{G}r_F(\mathcal{V}_0^Y(\mathcal{D}_X))$ of graded \mathcal{O}_X -algebras is an isomorphism (here F stands for the usual filtration by the order of the operators). As a consequence of the former result we see that, if Y is free, then $\mathcal{V}_0^Y(\mathcal{D}_X)$ is a left and right coherent sheaf and the stalk at each point has global homological dimension $\leq 2n$. To prove theorem 2.1 we first show that a homogeneous element in $\mathcal{G}r_F(\mathcal{D}_X)$ such that the successive Poisson brackets with a local equation of Y are multiple of this equation, can be expressed as a polynomial, with coefficients in \mathcal{O}_X , in the principal symbols of a base of $\mathcal{D}\mathrm{er}(\log Y)$.

In section 3 we study the relation between the logarithmic De Rham complex $\Omega_X^{\bullet}(\log Y)$ [10] with respect to a free divisor Y and the $\mathcal{V}_0^Y(\mathcal{D}_X)$ -modules. This is a sub-complex of the meromorphic De Rham complex $\Omega_X^{\bullet}[\star Y]$. When Y is a smooth divisor or, more generally, a normal crossing divisor, a simple calculation shows that both complexes are quasi-isomorphic. The same is true if Y is a strongly quasi-homogeneous free divisor [3]. We now summarize the results of section 3. We start by defining the logarithmic Spencer complex $\mathcal{S}p^{\bullet}(\log Y)$. We give a filtration of it such that its graded complex locally coincides with the Koszul complex of the ring $\mathcal{G}r_F(\mathcal{V}_0^Y(\mathcal{D}_X))$ associated with the principal symbols of a base of $\mathcal{D}er(\log Y)$. These symbols form a regular sequence by theorem 2.3. Since the graded complex is a resolution of \mathcal{O}_X , we conclude that $\mathcal{S}p^{\bullet}(\log Y)$ is a $\mathcal{V}_0^Y(\mathcal{D}_X)$ -locally free resolution of \mathcal{O}_X (c.f. proposition 3.2). If \mathcal{M} is a \mathcal{O}_X -module with an integrable logarithmic connection along Y, it carries a natural structure of left $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module (by theorem 2.1). In theorem 3.3 we prove that the

^{*}Supported by DGICYT PB94-1435

complexes of \mathbb{C} -vector spaces $\Omega_X^{\bullet}(\log Y)(\mathcal{M})$ and $\mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{S}p^{\bullet}(\log Y), \mathcal{M})$ are isomorphic. For this, we have to prove that the natural morphisms of \mathcal{O}_X -modules $\phi^p \colon \Omega_X^p(\log Y) \otimes_{\mathcal{O}_X} \mathcal{M} \to \mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{S}p^{-p}(\log Y), \mathcal{M})$ commute with the differentials. It is not easy to see this directly. The basic ideas are to reduce to the case of $\mathcal{M} = \mathcal{V}_0^Y(\mathcal{D}_X)$, to base-change the scalars in $\mathcal{V}_0^Y(\mathcal{D}_X)$ to the sheaf $\mathcal{D}_X[\star Y]$ of the meromorphic differential operators along Y, and to extend the ϕ^p to some $\Phi^p \colon \Omega_X^p[\star Y] \otimes_{\mathcal{O}_X[\star Y]} \mathcal{D}_X[\star Y] \to \mathcal{H}om_{\mathcal{D}_X[\star Y]}(\mathcal{S}p^{-p}[\star Y], \mathcal{D}_X[\star Y])$, which define an isomorphism between the respective complexes. The proof of the fact that the Φ^p commute with the differentials is easy if we use equations with respect to the bases $\{dx_1, \ldots, dx_n\}, \{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\}$, where (x_1, \ldots, x_n) is a local coordinate system. This simplifies our problem since $[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}] = 0$. Therefore, we obtain a canonical quasi-isomorphism $\Omega_X^{\bullet}(\log Y)(\mathcal{M}) \simeq \mathbf{R}\mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{O}_X, \mathcal{M})$.

These results generalize [5, App. A], valid only for normal crossing divisors, to the case of Y being an arbitrary free divisor.

1.1. DÉRIVATIONS ET FORMES LOGARITHMIQUES. DIVISEURS LIBRES [12].— On appelle $\mathcal{D}\mathrm{er}(\log Y)$ le sous- \mathcal{O}_X -module de $\mathcal{D}\mathrm{er}_{\mathbb{C}}(\mathcal{O}_X)$ des champs de vecteurs tangents à Y en tout point lisse. Il s'agit d'un \mathcal{O}_X -module cohérent. On note $\mathrm{Der}(\log f)$ (ou $\mathrm{Der}(\log I)$) la fibre en x de $\mathcal{D}\mathrm{er}(\log Y)$ ou, de façon équivalente, $\mathrm{Der}(\log f) = \{\delta \in \mathrm{Der}_{\mathbb{C}}(\mathcal{O}), \delta(f) \in (f)\}$. On dit que Y est un diviseur libre si $\mathcal{D}\mathrm{er}(\log Y)$ est un \mathcal{O}_X -module localement libre (de rang n). De même, on dit que f (ou I) est libre si $\mathrm{Der}(\log f)$ est un \mathcal{O} -module libre (de rang n).

Notons $\Omega_X^{\bullet}(\log Y)$ le sous-complexe de $\Omega_X^{\bullet}[\star Y]$ des formes logarithmiques par rapport à Y, c'est-à-dire les formes ω telles que $f\omega$ et $fd\omega$ sont holomorphes sur X. Notons $j^{\bullet}: \Omega_X^{\bullet}(\log D) \hookrightarrow \Omega_X^{\bullet}[\star Y]$ l'inclusion. Dans le cas où Y est libre, il existe une dualité parfaite $\langle \ , \ \rangle$ entre $\Omega_X^1(\log Y)$ et $\mathcal{D}\text{er}(\log Y)$. En plus, on a: $\Omega_X^p(\log Y) = \bigwedge_{\mathcal{O}_X}^p \Omega_X^1(\log Y) \stackrel{\gamma^p}{\simeq} \mathcal{H}om_{\mathcal{O}_X} \left(\bigwedge^p \mathcal{D}\text{er}(\log Y), \mathcal{O}_X \right)$, où l'isomorphisme γ^p est donné localement par $\gamma^p(\omega_1 \wedge \cdots \wedge \omega_p)(\delta_1 \wedge \cdots \wedge \delta_p) = \det(\langle \omega_i, \delta_j \rangle)_{1 \leq i, j \leq p}$, avec ω_i (resp. δ_j) des sections locales de $\Omega_X^1(\log Y)$ (resp. $\mathcal{D}\text{er}(\log Y)$).

1.2. V-FILTRATION.— On définit la \mathcal{V} -filtration relative à Y sur \mathcal{D}_X (resp. sur \mathcal{D}) par extension du cas lisse [8, 7] :

$$\mathcal{V}_k^Y(\mathcal{D}_X) = \{ P \in \mathcal{D}_X, \ P(\mathcal{I}^j) \subset \mathcal{I}^{j-k}, \forall j \in \mathbb{Z} \}, k \in \mathbb{Z}, \ (\mathcal{I}^k = \mathcal{O}_X \text{ si } k \leq 0).$$

^{1.} NOTATIONS ET PRÉLIMINAIRES.— Soient X une variété analytique complexe de dimension n et $Y \subset X$ une hypersurface d'idéal \mathcal{I} . Notons \mathcal{D}_X le faisceau des opérateurs différentiels linéaires sur X, $\mathcal{D}\mathrm{er}_{\mathbb{C}}(\mathcal{O}_X)$ le faisceau des dérivations de \mathcal{O}_X et $\mathcal{D}_X[\star Y]$ le faisceau des opérateurs différentiels méromorphes le long de Y. Si l'on fixe un point x de Y, notons $\mathcal{D} = \mathcal{D}_{X,x}$, $\mathcal{O} = \mathcal{O}_{X,x}$, $I = (f) = \mathcal{I}_x$ et $\mathrm{Der}_{\mathbb{C}}(\mathcal{O}) = \mathcal{D}\mathrm{er}_{\mathbb{C}}(\mathcal{O}_X)_x$. Notons aussi F^{\bullet} la filtration sur \mathcal{D}_X (resp. sur \mathcal{D}) par l'ordre des opérateurs, et $\Omega_X^{\bullet}[\star Y]$ le complexe de De Rham méromorphe le long de Y.

(resp. $\mathcal{V}_k^I(\mathcal{D}) = \left(\mathcal{V}_k^Y(\mathcal{D}_X)\right)_x = \{P \in \mathcal{D}, \ P(I^j) \subset I^{j-k}, \forall j \in \mathbb{Z}\}, k \in \mathbb{Z}, \ I^k = \mathcal{O} \text{ si } k \leq 0$). La décomposition canonique $F^1\mathcal{D}_X = \mathcal{O}_X \oplus \mathcal{D}\mathrm{er}_{\mathbb{C}}(\mathcal{O}_X)$ induit $F^1\left(\mathcal{V}_0^Y(\mathcal{D}_X)\right) = \mathcal{O}_X \oplus \mathcal{D}\mathrm{er}(\log Y)$, d'où un morphisme canonique $\alpha_X : \mathcal{S}ym_{\mathcal{O}_X}\left(\mathcal{D}\mathrm{er}(\log Y)\right) \to \mathcal{G}r_F\left(\mathcal{V}_0^Y(\mathcal{D}_X)\right)$ de \mathcal{O}_X -algèbres graduées. De façon analogue, on dispose d'un morphisme canonique de \mathcal{O} -algèbres graduées $\alpha : Sym_{\mathcal{O}}\left(\mathrm{Der}(\log f)\right) \to Gr_F\left(\mathcal{V}_0^I(\mathcal{D})\right)$, qui s'identifie avec la fibre de α_X en x.

2. RÉSULTATS SUR L'ANNEAU $\mathcal{V}_0^Y(\mathcal{D}_X)$.—

THÉORÈME 2.1 Si f est libre et $\{\delta_1, \delta_2, \dots, \delta_n\}$ est une base du \mathcal{O} -module $\operatorname{Der}(\log f)$, chaque opérateur différentiel $P \in \mathcal{V}_0^I(\mathcal{D})$ s'écrit de façon unique sous la forme:

$$P = \sum \beta_{i_1 \cdots i_n} \delta_1^{i_1} \delta_2^{i_2} \cdots \delta_n^{i_n}, \text{ avec } \beta_{i_1 \cdots i_n} \in \mathcal{O}.$$

Preuve. La preuve se fait par récurrence sur l'ordre de $P \in \mathcal{V}_0^I(\mathcal{D})$. Elle est basée sur l'existence d'un $Q \in \mathcal{O}[\delta_1, \dots, \delta_n]$ tel que $\sigma(Q) = \sigma(P)$, qui est une conséquence de la proposition suivante. C.Q.D.

PROPOSITION 2.2 Si f est libre et $\{\delta_1, \delta_2, \dots, \delta_n\}$ est une base de $Der(\log f)$, pour chaque famille de polynômes homogènes $R_0, \dots, R_d \in Gr_F(\mathcal{D})$, avec R_k de degré d-k, et vérifiant $\{R_k, f\} = fR_{k+1}$, $(0 \le k < d)$ ($\{\ ,\ \}$ dénote le crochet de Poisson dans $Gr_F(\mathcal{D})$, cf. [6]), il existe des polynômes homogènes $H_j^k \in Gr_F(\mathcal{D})$ $(1 \le j \le n; \ 0 \le k < d)$, avec H_j^k de dégré d-k-1, tels que $R_k = \sum_{j=1}^n H_j^k \sigma(\delta_j)$ et $\{H_j^k, f\} = fH_j^{k+1}$ $(1 \le j \le n; \ 0 \le k < d-1)$.

Preuve. Soit $A=(\alpha_i^j)$ la matrice formée par les coefficients des δ_i par rapport à la base $\{\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n}\}$ de $\mathrm{Der}_{\mathbb{C}}(\mathcal{O})$. D'après le critère de Saito [10], l'ensemble des δ_i et des ∂_{ξ_j} est une base du \mathcal{O}_{2n} -module $\mathrm{Der}_{\mathcal{O}_{2n}}(\log f)$, avec $\mathcal{O}_{2n}=\mathbb{C}\{x_1,\cdots,x_n,\xi_1,\cdots,\xi_n\}$. tant donné que la dérivation $\{R_k,-\}$ appartient à $\mathrm{Der}_{\mathcal{O}_{2n}}(\log f)$, il existe des $G_j^k\in Gr_F(\mathcal{D})$ $(1\leq j\leq n;\ 0\leq k< d)$ tels que $\frac{\partial R_k}{\partial \xi_i}=\sum_{j=1}^n G_j^k\alpha_i^j$. Or, comme $\sigma(\delta_i)=\sum_{j=1}^n\alpha_i^j\xi_j$, la relation d'Euler pour R_k nous donne $R_k=\frac{1}{d}\sum_{j=1}^n G_j^k\sigma(\delta_j)(0\leq k< d)$. On vérifie que $\{G_j^k,f\}=fG_j^{k+1}(0\leq k< d-1)$. Pour conclure il suffit de prendre $H_j^k=\frac{1}{d}G_j^k$. C.Q.D.

COROLLAIRE 2.3 Si Y est un diviseur libre, le morphisme $\alpha_X : Sym_{\mathcal{O}_X}(\operatorname{Der}(\log Y)) \to \mathcal{G}r_F(\mathcal{V}_0^Y(\mathcal{D}_X))$ définit dans 1.2 est un isomorphisme, et le faisceau d'anneaux $\mathcal{V}_0^Y(\mathcal{D}_X)$ est cohérent à gauche et à droite.

Preuve. La première partie est une conséquence immédiate du théorème 2.1. D'après la cohérence de $\mathcal{G}r_F\left(\mathcal{V}_0^Y(\mathcal{D}_X)\right)$ (cf. [2, VI, lemma 3.2]), pour la deuxième partie on applique le théorème 9.16 de [1]. C.Q.D.

3. Interprétation du complexe de De Rham logarithmique par rapport à un diviseur libre. Dans cette section on supposera que Y est un diviseur libre.

DÉFINITION 3.1 On définit le complexe de Spencer logarithmique $Sp^{\bullet}(\log Y)$ par

$$\mathcal{V}_{0}^{Y}(\mathcal{D}_{X}) \otimes_{\mathcal{O}_{X}} \stackrel{n}{\wedge} \mathcal{D}er(\log Y) \stackrel{\epsilon_{-n}}{\to} \cdots \stackrel{\epsilon_{-2}}{\to} \mathcal{V}_{0}^{Y}(\mathcal{D}_{X}) \otimes_{\mathcal{O}_{X}} \stackrel{1}{\wedge} \mathcal{D}er(\log Y) \stackrel{\epsilon_{-1}}{\to} \mathcal{V}_{0}^{Y}(\mathcal{D}_{X}),$$

$$\epsilon_{-p}(P \otimes (\delta_{1} \wedge \cdots \wedge \delta_{p})) = \sum_{i=1}^{p} (-1)^{i-1} P \delta_{i} \otimes (\delta_{1} \wedge \cdots \wedge \widehat{\delta_{i}} \wedge \cdots \wedge \delta_{p}) +$$

$$+ \sum_{1 \leq i < j \leq p} (-1)^{i+j} P \otimes ([\delta_{i}, \delta_{j}] \wedge \delta_{1} \wedge \cdots \wedge \widehat{\delta_{i}} \wedge \cdots \wedge \widehat{\delta_{j}} \wedge \cdots \wedge \delta_{p}), \quad (2 \leq p \leq n),$$

et $\epsilon_{-1}(P \otimes \delta) = P\delta$. Ce complexe de $\mathcal{V}_0^Y(\mathcal{D}_X)$ -modules admet une augmentation $\epsilon_0 : \mathcal{V}_0^Y(\mathcal{D}_X) \to \mathcal{O}_X$, $\epsilon_0(P) = P(1)$. Notons $\widetilde{Sp}^{\bullet}(\log Y)$ le complexe augmenté.

Cette définition est analogue à celle du complexe de Spencer usuel $\mathcal{S}p^{\bullet}$ de \mathcal{O}_X (cf. [9, 2.1]) et généralise celle donnée par Esnault–Viehweg [5, App. A] dans le cas d'un diviseur à croisements normaux. De façon analogue, on note $\mathcal{S}p^{\bullet}[\star Y] = \mathcal{D}_X[\star Y] \otimes_{\mathcal{D}_X} \mathcal{S}p^{\bullet}$ le complexe de Spencer méromorphe de $\mathcal{O}_X[\star Y]$.

PROPOSITION 3.2 Le complexe $Sp^{\bullet}(\log Y)$ est une résolution localement libre de \mathcal{O}_X comme $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module à gauche.

Preuve. On définit

$$F^k\left(\mathcal{V}_0^Y(\mathcal{D}_X)\otimes \overset{p}{\wedge} \mathcal{D}\mathrm{er}(\log Y)\right) = F^{k-p}\left(\mathcal{V}_0^Y(\mathcal{D}_X)\right)\otimes \overset{p}{\wedge} \mathcal{D}\mathrm{er}(\log Y), \ F^k(\mathcal{O}_X) = \mathcal{O}_X.$$

Ces filtrations sont compatibles avec les différentielles. Le complexe gradué coïncide localement, si $\{\delta_1, \dots, \delta_n\}$ est une base de $\operatorname{Der}(\log f)$, avec le complexe de Koszul de l'anneau $\operatorname{Gr}_F(\mathcal{V}_0^I(\mathcal{D}))$ par rapport à la suite $\sigma(\delta_1), \dots, \sigma(\delta_n)$ dans $\operatorname{Gr}_F(\mathcal{V}_0^I(\mathcal{D}))$, qui est une suite régulière d'après le corollaire 2.3. Il est donc exact, et par conséquent, le complexe de Spencer logarithmique augmenté est aussi exacte. C.Q.D.

Si \mathcal{M} est un \mathcal{O}_X -module muni d'une connexion logarithmique intégrable, on définit de la façon usuelle son complexe de De Rham logarithmique, noté $\Omega_X^{\bullet}(\log Y)(\mathcal{M})$. Or, grâce au théorème 2.1, un tel objet porte une structure naturelle de $\mathcal{V}_0^Y(\mathcal{D}_X)$ -module à gauche.

THÉORÈME 3.3 Dans la situation précédente, les complexes $\mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{S}p^{\bullet}(\log Y), \mathcal{M})$ et $\Omega_X^{\bullet}(\log Y)(\mathcal{M})$ sont canoniquement isomorphes comme complexes de faisceaux de \mathbb{C} -espaces vectoriels, et donc, on a un quasi-isomorphisme canonique:

$$\Omega_X^{\bullet}(\log Y)(\mathcal{M}) \simeq \mathbf{R}\mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}(\mathcal{O}_X, \mathcal{M}).$$

Preuve. Le cas général se réduit au cas $\mathcal{M} = \mathcal{V}_0^Y(\mathcal{D}_X)$, car

$$\Omega_X^{\bullet}(\log Y)(\mathcal{M}) = \Omega_X^{\bullet}(\log Y)(\mathcal{V}_0^Y(\mathcal{D}_X)) \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{M},$$

$$\mathcal{H}om_{\mathcal{V}_{0}^{Y}(\mathcal{D}_{X})}\left(\mathcal{S}p^{\bullet}(\log Y),\mathcal{M}\right)=\mathcal{H}om_{\mathcal{V}_{0}^{Y}(\mathcal{D}_{X})}\left(\mathcal{S}p^{\bullet}(\log Y),\mathcal{V}_{0}^{Y}(\mathcal{D}_{X})\right)\otimes_{\mathcal{V}_{0}^{Y}(\mathcal{D}_{X})}\mathcal{M}.$$

Pour $\mathcal{M} = \mathcal{V}_0^Y(\mathcal{D}_X)$, et à partir des isomorphismes γ^p de 1.1, on définit les isomorphismes $\mathcal{V}_0^Y(\mathcal{D}_X)$ -linéaire à droite:

$$\phi^p \colon \Omega_X^p(\log Y)(\mathcal{V}_0^Y(\mathcal{D}_X)) \to \mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)}\left(\mathcal{S}p^{-p}(\log Y), \mathcal{V}_0^Y(\mathcal{D}_X)\right)$$

donnés par: $\phi^p((\omega_1 \wedge \cdots \wedge \omega_p) \otimes Q) (P \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = P \cdot \det(\langle \omega_i, \delta_j \rangle) \cdot Q$. Montrons que les ϕ^p commutent avec les différentielles, et définissent donc un isomorphisme de complexes. Or, grâce l'isomorphisme $\mathcal{D}_X[\star Y] \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)} \mathcal{S} p^{\bullet}(\log Y) \simeq \mathcal{S} p^{\bullet}[\star Y]$, on obtient un morphisme naturel de complexes de faisceaux de $\mathcal{V}_0^Y(\mathcal{D}_X)$ -modules à droite $\tau^{\bullet}: \mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)} \left(\mathcal{S} p^{\bullet}(\log Y), \mathcal{V}_0^Y(\mathcal{D}_X)\right) \to \mathcal{H}om_{\mathcal{D}_X[\star Y]} \left(\mathcal{S} p^{\bullet}[\star Y], \mathcal{D}_X[\star Y]\right)$, d'expression locale $\tau^p(\alpha) (P \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = f^{-k}\alpha (R \otimes (f\delta_1 \wedge \cdots \wedge f\delta_p))$, R étant une section de $\mathcal{V}_0^Y(\mathcal{D}_X)$ et k un entier tels que $Pf^{-p} = f^{-k}R$. On vérifie que: $\tau^p \circ \phi^p = \Phi^p \circ j^p$, où $\Phi^p: \Omega_X^p[\star Y] \otimes_{\mathcal{O}_X[\star Y]} \mathcal{D}_X[\star Y] \to \mathcal{H}om_{\mathcal{D}_X[\star Y]} \left(\mathcal{S} p^{-p}[\star Y], \mathcal{D}_X[\star Y]\right)$ est l'isomorphisme $\mathcal{D}_X[\star Y]$ -linéaire à droite définit par $\Phi^p((\omega_1 \wedge \cdots \wedge \omega_p) \otimes Q) (P \otimes (\delta_1 \wedge \cdots \wedge \delta_p)) = P \cdot \det(\langle \omega_i, \delta_j \rangle) \cdot Q$. Le fait que les Φ^p commutent avec les différentielles et définissent un isomorphisme de complexes $\Phi^{\bullet}: \Omega_X^{\bullet}[\star Y] (\mathcal{D}_X[\star Y]) \to \mathcal{H}om_{\mathcal{D}_X[\star Y]} (\mathcal{S} p^{\bullet}[\star Y], \mathcal{D}_X[\star Y])$ de $\mathcal{D}_X[\star Y]$ -modules à droite, est essentiellement la même que celle de l'isomorphisme $\Omega_X^{\bullet} \simeq \mathcal{H}om_{\mathcal{D}_X}(\mathcal{S} p^{\bullet}, \mathcal{O}_X)$ (cf. [9, I, lemme (2.6.3)]), car on peut procéder localement et utiliser l'expression des éléments en fonction des bases

$$\{dx_{i_1} \wedge \cdots \wedge dx_{i_p}\}_{1 \leq i_1 < \cdots < i_p \leq n} \text{ et } \{\frac{\partial}{\partial x_{j_1}} \wedge \cdots \wedge \frac{\partial}{\partial x_{j_p}}\}_{1 \leq j_1 < \cdots < j_p \leq n},$$

 (x_1, \dots, x_n) étant un système de coordonnées locales centrées en $x \in Y$. Pour conclure, on prouve que τ^{\bullet} est injectif à partir du fait que $\mathcal{V}_0^Y(\mathcal{D}_X)$ n'a pas de la \mathcal{O}_X -torsion, et on remarque que $\Phi^{\bullet} \circ j^{\bullet}$ est un morphisme de complexes qui coïncide en chaque dégré p avec $\tau^p \circ \phi^p$, o j^{\bullet} est l'inclusion du complexe de De Rham logarithmique de $\mathcal{V}_0^Y(\mathcal{D}_X)$ dans le complexe de De Rham mromorphe de $\mathcal{D}_X[\star Y]$. C.Q.D.

REMARQUE 3.4 Une question classique est la comparaison entre le complexe de De Rham logarithmique et le complexe de De Rham méromorphe par rapport à un diviseur Y. Si Y est un diviseur à croisements normaux, un calcul simple montre que ces deux complexes sont quasi-isomorphes (cf. [4, II prop. 3.13]). Le même résultat est vraie si Y est un diviseur libre et fortement quasi-homogène [3]. D'après le théorème 3.3, si Y est un diviseur libre arbitraire, les complexes de De Rham méromorphe et logarithmique sont quasi-isomorphes si et seulement si

$$0 = \mathbf{R} \mathcal{H}om_{\mathcal{D}_X} \left(\mathcal{D}_X \otimes_{\mathcal{V}_0^Y(\mathcal{D}_X)}^{\mathbb{L}} \mathcal{O}_X, \frac{\mathcal{O}_X[\star Y]}{\mathcal{O}_X} \right) \left(= \mathbf{R} \mathcal{H}om_{\mathcal{V}_0^Y(\mathcal{D}_X)} \left(\mathcal{O}_X, \frac{\mathcal{O}_X[\star Y]}{\mathcal{O}_X} \right) \right).$$

Références bibliographiques

- [1] J.E. Björk. Rings of Differential Operators. North Holland, Amsterdam, 1979.
- [2] C. Bănică and O. Stănăsilă. Algebraic methods in the global theory of complex spaces. John Wiley, New York, 1976.
- [3] F.J. Castro-Jiménez, D. Mond et L. Narváez-Macarro. Cohomologie du complémentaire d'un diviseur libre. C.R.A.S. Paris, 320 (1995), 55–58.
- [4] P. Deligne. Équations Différentielles à Points Singuliers Réguliers, Lect. Notes in Math., 163. Springer-Verlag, Berlin-Heidelberg, 1970.
- [5] H. Esnault and E. Viehweg. Logarithmic De Rham complexes and vanishing theorems. *Invent. Math.*, 86 (1986), 161–194.
- [6] O. Gabber. The integrability of the characteristic variety. Amer. J. Math., 75 (1981), 445–468.
- [7] M. Kashiwara. Vanishing cycle sheaves and holonomic systems of differential equations. *Lect. Notes in Math.*, 1012 (1983), 134–142.
- [8] B. Malgrange. Le polynôme de Bernstein-Sato et cohomologie évanescente. Astérisque, 101-102 (1983), 233-267.
- [9] Z. Mebkhout. Le formalisme des six opérations de Grothendieck pour les \mathcal{D}_X -modules cohérents, Travaux en cours, 35. Hermann, Paris, 1989.
- [10] K. Saito. Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo, 27 (1980), 265–291.

F.-J. C. M.: Fac. Matemáticas, Univ. Sevilla, Ap. 1160, 41080 Sevilla, España E-mail: frcalder@obelix.cica.es