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Introduction

These notes are issued from a course taught in the C.I.M.P.A. School on Differential
Systems, held at Seville (Spain) from September 2 through September 13, 1996. They are
an improved version of the handwritten notes distributed during the School.

The aim of these notes is to introduce the reader to the Local Duality Theorem in
D-module Theory —LDT for short— and to explain in a detailed way the proofs of it
in [Mes], [K-K]. This theorem asserts that the Verdier duality for analytic constructible
complexes interchanges the “De Rham” and the “Solutions” of every bounded holonomic
complex of D-modules on a complex manifold. Besides the importance and the beauty
of such a result, it is a good representative of the relationship between discrete and
continuous coefficients, an important idea in contemporary Algebraic Geometry.

The first published duality type result is a punctual one due to Kashiwara [Kal, §5. The
LDT in the way we currently use was first stated by Mebkhout in [Mey], 4.1, [Me,], 5.2,
but its proof depended on a still conjectural theory of Topological Homological Algebra. A
complete proof was given in [Meg], III.1.1 (see also [Mey], 1.1, [Mes], ch. I, 4.3). Kashiwara
and Kawai proposed another proof in [K-K], 1.4.6 based on the punctual result above.

The proof of the punctual result of Kashiwara uses the Local Duality in Analytic
Geometry (residues). Mebkhout’s proof of the LDT uses Serre and Poincaré-Verdier
dualities to construct the duality morphism and to prove it is an isomorphism. Kashiwara
and Kawai define the duality morphism as the formal one and reduce the proof of the
LDT to the former result of Kashiwara by means of the Biduality Theorem for analytic
constructible complexes. However, this reduction demands the commutativity of some
diagram involving the global formal duality morphism and the punctual one, which is not
obvious. Both proofs are evidently based on the Kashiwara’s Constructibility Theorem.

In these notes we prove that the duality morphism defined by Mebkhout coincides
with the formal one and, as a consequence, that the diagram needed in Kashiwara-Kawai’s
proof is commutative. This fact is explained by the relationship between the Global Serre
Duality and the Local Duality in Analytic Geometry (cf. [Li]).

As we could expect, to do the task we need to be especially attentive to the definition
and the properties of the different formal objects involved. In particular, we have to
manage some signs. A complete reference for these questions is [Dey], 1.1. For the sake
of completeness and for the ease of the reader, we have collected (a big portion of) them
in the Appendix.

Other somewhat different proofs of the LDT are available in [Boy|, §19, [Sal, 2.7, [Bj],
ITI, 3.3.10. We have chosen to present the first proof of the LDT, due to Mebkhout, and
the proof of Kashiwara-Kawai because they are conceptually simple and they fit in this
collective work as a continuation of [M-S].



This work has been done during a sabbatical year at the Institute for Advanced Study,
Princeton. I would like to thank this institution for his hospitality. Discussions with Pierre
Deligne have been of great value to me. I am grateful to him. I am also grateful to Leo
Alonso and Ana Jeremias for good suggestions.

Notations

Given a sheaf of rings R x on a topological space X, we shall denote by C*(Rx), K*(Rx)
and D*(Rx) the category of complexes, the homotopy category of complexes and the
derived category of the abelian category of left R x-modules respectively. We shall use
R x for referying to the category of right R x-modules.

The symbols A", B",€", etc. will be used for complexes of sheaves on a topological
space: the objects of A" are the A™ and the differentials are d’ : A™ — A" for every
nez.

Given a complex A" and an integer d, we shall denote by h?(A°) its dth cohomology
object.

Given a complex A’ (of objects in some additive category), the complex A'[1] is defined
by A'[l]n = An+1, dA‘[l] = —dy.

The total derived functors of Homy (—,—), Homy (—,—) and — @, — will be de-
noted by R Homy (—,—),R Homy (—,—)and of —®52X— respectively, and ExthX (—,—) =
hR Homy (—,—).

If R x is the constant sheaf associated to a fixed ring K and no confusion is possible,
we shall abreviate Hompy (-, —), Homy (—,—), R Homy (—,—) and Extf{x(—, —) by
Hom (—, —), Homy(—, =), R Homy(—,—) and Ext%(—, —) respectively.

81 Duality for Analytic Constructible Sheaves

Throughout this section X denotes a connected complex analytic manifold countable at
infinity of dimension d, and D%(C x) the derived category of bounded complexes of sheaves
of C-vector spaces with analytic constructible cohomology (cf. [Ve], [Ka], [M-N3]). We
denote T x = C x[2d].



1.1 The Topological Biduality Morphism

The abelian category of sheaves of complex vector spaces over X has finite injective
dimension (cf. [DP], exp. 2, 4.3). The functor R Hom'y(—, —) induces a functor

R Hom'y(—,—): D*(Cx) x D*(Cx) — D°(Cx)

which can be computed by taking injective resolutions of the second argument, or locally
free resolutions of the first argument if they exist.

(1.1.1) PROPOSITION. If 1,5, are two compleres in D°(Cx), then R Hom'y(5,5;)
is also in D2(Cx). Furthermore, if the F; are constructible with respect to a Whitney
stratification 3 of X, then R Hom'y (F1,F5) is also constructible with respect to 3.

PROOF. ! We can suppose that the ; are single constructible sheaves ; (cf. [M-Nj],
I1.5). The question being local (cf. loc. cit., 1.4.21) we can suppose that F; = 0,4, for
o : S — X the inclusion of a stratum of ¥ and £ a local system (of finite rank) on S (cf.
loc. cit., 1.4.14). In this case we have R Hom'y (1L, F9) =~ R 0, R Homg(L,0'F,), and we
can conclude by induction on the dimension of X and Thom-Whitney’s isotopy theorem

(cf. loc. cit., [.4.15). Q.E.D.

(1.1.2) DEFINITION. For every bounded complex ¥ in D°(Cx) we define its dual by
3V =R Homy (5 ,Cx)

and the topological biduality morphism B4 : F° —>(‘f’v)v as in (A.2).

(1.1.3) PROPOSITION. IfJF is a bounded constructible complex on X, then for each point
x € X and for every small ball B centered in x with respect to some local coordinates, the
complex R I'.(B,5") has finite dimensional cohomology.

PROOF. According to proposition (1.1.1), the complex 5" is bounded and constructible.
Then, for every small ball B centered in z, the canonical morphism R I'(B,5) — ("),
is an isomorphism (cf. [M-N3], 1.4.16) and we conclude by the Poincaré-Verdier duality

R T'(B,5 ") =R Homy(F|5,Cp) — R Homp(R Te(B,F),C)[—2d]

(cf. [DP], exp. 5). Q.E.D.

' This proof is also valid in the case of an arbitrary complex analytic space.



1.2 The Biduality Theorem

The Biduality Theorem for analytic constructible sheaves has been first stated and proved
by Verdier in [Ve], 6.2 using Resolution of Singularities. Other proofs in the setting of
cohomologically constructible sheaves are available in [DP], exp. 10, §2, [Boy], V, 8.10,
[K-S], 3.4. We sketch here a proof following the lines in [SGA 43], Th. finitude, 4.3 and
[M-N3], I11.2.1,I11.2.6 and based on the Poincaré-Verdier duality cf. [DP], exp. 4,5, [Boy],
V, 7.17, [Iv], VIL.5.2, [K-S], 3.1.10.

(1.2.1) THEOREM. For each bounded constructible complex ¥ on X, the biduality mor-
phism By : F — (FV)Y is an isomorphism.

PRrROOF. We can suppose that 7 is a single constructible sheaf ¥ (cf. [M-Nj], I.5). The
result is clear if F is a local system (of finite rank).

As the question is local, we can also suppose that X = Df’l X Dy, where the D, are
open disks in C, F is a local system on the complement of an hypersurface Z C X and
the first projection p: X —D{™! is finite over Z (cf. loc. cit., 1.4.20).

We can extend our data, first to a constructible sheaf Fon X = Dd v and second to
F =0,F, where 0 : X — X = D¢! x P is the (open) inclusion. Call p: X —Y = D!
the first projection, which is proper.

Let us consider the triangle

5 25 3 o o (1)

where the support of the (bounded) complex Q" is contained in Z U (Y x {oo}) and then
it is finite over Y.

By taking direct images by p we obtain a new triangle in D%(Cy)

 R%.6- _
RP.T 5 Rp,(F) —RP.Q —RFE,T[]
(cf. [M-N3], 1.4.23).

In order to prove that Bz is an isomorphism we need to prove that Q° = 0, but that
is equivalent to R p,Q" = 0 because p is finite over the support of Q.

Let Trx;y : Rp,Tx — Ty be the topological trace morphism for the proper map p.
According to the local form of the Poincaré-Verdier duality (cf. [Iv], VIL5, [K-S], 3.1.10)
the morphism pg.. composition of

R P, R Home(X', T) = R Homy (R 5,X", R P, Tx) B, p Homiy (R X, Ty)

is an isomorphism for every bounded complex of sheaves of C-vector spaces X ".
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Call p. := R Homy (pz, Ty) the isomorphism induced by pz. According to (A.5), we
can “redefine”

7") =R Homy(R Homy(T,T5),Tx)

and using (A.2) and lemma (A.15) we deduce the relation
(”R Hom‘y@rw) ° R P.B5 = PyoBup 5

By induction hypothesis, the morphism By 7 is an isomorphism, then R p, 3z too
and we obtain the desired R p,Q" = 0. Q.E.D.

(1.2.2) As X is an connected oriented manifold of (topological) dimension 2d, the topo-
logical trace morphism trx : H?4(X Cx) — C given by integration of top C*°-forms
with compact support is an isomorphism. Then, for each point x € X, denoting by
i : {x} — X the inclusion, the canonical morphism i'C x — R I',(X,Cx) gives rise to a
punctual topological trace isomorphism

tr, : H2(Cx) 225 HX(X,Cx) =5 C.

(1.2.3) PROPOSITION. Let § be a complez in D%(Cx) and x € X. Denotei : {x} — X
the (closed) inclusion. Then, the natural morphism

n: () =i 'R Homy(5,Cx) —R Homy(i'F",4'C x)

T

is an isomorphism. In particular, using (1.2.2), we obtain an isomorphism

() ~ R Homp(i'F ", C)[—2d].

PROOF. As (7)Y is a bounded complex of C-vector spaces with finite dimensional

cohomology and 4'C x ~ C[—2d], the natural morphism (A.2)
By : (37)y —R Homg (R Homy((37)),i'Cx),i'Cx)
is an isomorphism. We also have a canonical isomorphism (cf. (A.11))
g:i'((F)) =i'R Homy((5)",Cx) — R Homg((57)Y,4'Cx).

Call g* := R Homg (R Homg(g,i'C x),'C x) the isomorphism induced by g, and (i'B4.)* :=
R Homg(i'B5.,4'C x) the morphism induced by i'Bs., which is an isomorphism according
to theorem (1.2.1). To conclude, we observe that n = (i'B4.)* 0 g* o B, according to (A.12).
Q.E.D.



82 The Local Duality Morphism in » -module Theory

Throughout this section X denotes a complex analytic manifold countable at infinity of
dimension d, D x the sheaf of linear differential operators with coefficients in O x (cf.
[G-M], I) and D%(D x) the derived category of bounded complexes of left D x-modules
with coherent cohomology.

2.1 The Solution and the De Rham Functors

Here, our basic functor is R Homyp  (—, —) which can be computed by taking injective
resolutions of the second argument, or locally free resolutions of the first argument if they
exist.

Since D x is a coherent sheaf of rings and every single D y-module admits locally a
finite free resolution (cf. [Mes], ch. I, 2.1.16), we have an induced functor

R Homy, (—,—): DY(Dx) x D’(D x) —D’(Cx).
The De Rham functor is
DR =R Homyp (0x,—): D’(Dx) —D"(Cx)
and the Solutions functors are

Sol = HOmbX(—,OX> . Kb(Dx) —>Kb((CX),
Sol =R Homyp, (—,0x): DY(Dx) —D"(Cx).

We will also consider the external duality functors

D = Homyp (=, Dx) : KJ(Dx) —K.(,Dx),
D =R HOmbX(—,Qx) . Dlg(ﬂx) _>D(c)(r®X)

We have Sol(D x) =Sol(Dx) =0x.

The De Rham functor can be computed by means of the Spencer resolution Spy (cf.
[Mes], ch. I, 2.1.17), whose objects are defined by Sp’ = D x®e, A Derc(0x),p =
0,...,d and the differential e ? : Sp,” —>Sp)_((p_1) is given by:

p

EP(P@ (1A NG =D (1)U PE) @ (61 A Ao A Ady)+

i=1

+ Z ()P @ ([0, 6] AGL A+ AOgAve- NG A+ ABy)

I<i<j<p



forp=2,...,dand e (P ®§) = Pd for p=1.

There is an obvious augmentation € : Sp% = Dx — 0 x, *(P) = P(1), that makes
Spy into a (canonical) locally free resolution of O x as left D x-module. We will always
consider this augmentation to identify the functors DR (—) = Homp  (Spy, —).

Every left D x-module & carries an integrable connection V: & — Q% ®g, & and we
can then consider its classical De Rham complex 0y (€) (cf. [Dey], 1.2). It is defined by
Q% (&) = ®o, & for p=0,...,d, and the differential V7 : Q% (¢) — Q%" (&) is given
by VP(w® e) = (dw) ® e + (—1)Pw A V(e).

(2.1.1) LEMMA. For each left D x-module &, the morphisms

ag Q% ®oy € — Homiy, (Spx,€) = Homp, (Spx",€), p=0,....d

defined by o (0 ® €)(P ® §) = (—1)p(p2+1)P -(6,0) - e, commute with the differentials and
gives rise to a natural isomorphism of complexes

0 + Qi (e) — Homiy, (Spi. &)

p(p+1)
2

The proof of the lemma is straightforward. It should be noticed that the sign (—1)
is imposed by the definition of the functor Homy (-, —) (cf. (A.1)).

We will denote

o = ag . Qy(Dx) = Homy, (Spx,Dx) = D(Spx) =D(0x),
ap =y, Qy = Qg (0x) = Homip (Spyx,0x) = Sol(Spy) = Sol(0x).

Obviously « is right D x-linear.

(2.1.2) Denote by wy the sheaf of top differential forms Q% on X. It carries a canonical
right D y-module structure (cf. [G-M], prop. 15, [M-Ny], 1.1.5). Call 0" : Qx(Dx) —
wx [—d] the right D x-linear morphism given by 0%(§®@ P) = - P. It is a quasi-isomorphism
(cf. [Mes], ch. I, 2.6.6) admitting a C x-linear section 7~ given by 7¢() = § ® 1. Consider
the following morphisms:

Q= ot wy[—d] —>H0m'DX(Sp'XaDX) = D(Spy),
abo(o")_l can

ot wy|=d] ———— Homy (Spx,Dx) = D(Spx) — D (Spx) =D (0x).

The first one is a C x-linear quasi-isomorphism, and the second one is an isomorphism in
the derived category of right D x-modules. Both morphisms coincide in D?(C x).

10



In particular, the cohomology of the complex DR (D x) vanishes in degree different
from d and then DR (D x) = Ext§, (0x,D x)[—d].

According to the Poincaré lemma, the inclusion Cx C Q% gives rise to a quasi-
isomorphism ky : Cx — Qy = Qy(0x). Using the isomorphism of complexes a; we
obtain an isomorphism in the derived category

k:Cx — Homp (Spx,0x) =Sol(0x) =DR(0x). (2)

2.2 The Duality Morphism

(2.2.1) DEFINITION. For every bounded complex of left D x-modules M with coherent
cohomology we define the duality morphism

&y :DR(M') —Sol(M")Y =R Homg, (Sol(M'),Cx)
by composing the natural morphism (cf. (A.2))
£ :R Homyp, (0x,M') —R Homg, (Sol(M'),S0l(0x))

with the isomorphism induced by Kk (2).

2.2.2) PROPOSITION. For M € DD x) there exist (local) natural isomorphisms
( . 2

Ay i DR(D x) ®p, M —DR (M),
for : Sol(D x)Y ®py M —Sol(M")Y
such that the following diagram commutes

. Ep,, Dldy -
DR (D x) ®py M —2—"" Sol(Dx)" ®ny M

A J/z ZJ(ILM‘

DR (M) LN Sol(M")Y.

=

Proor. Take a flat resolution ?° — M and an injective Godement resolution © x —7".
We have

DR (D x) ®93X M = Homy, (Spx,D x) ®@X P,
DR (M) = Homy, (Spy, M) = Homy, (Spy,P),
Sol(Dx)" @y M' = 0Y% ®p, M = Homg, (3", Homi (Spx.8')) @py P,
Sl(M) = -+ = Homz, (Homiy, (9°,5), Homi, (Spx.3")

11



and we are reduced to lemma (A.10).

The fact that Ay and p,, are isomorphisms is a local question. So, we can suppose
that M has a finite free resolution and we are reduced to the obvious fact that Ap, and
M, are isomorphisms. Q.E.D.

(2.2.3) COROLLARY. For every bounded complex of left D x-modules M with coherent
cohomology, the duality morphism &y is an isomorphism if and only if &, @ Idy is an
1somorphism.

83 Proof of the Local Duality Theorem

Throughout this section X denotes a complex analytic manifold countable at infinity of
dimension d.

3.1 Statement of the Local Duality Theorem

(3.1.1) THEOREM. For every bounded complex of left D x-modules M with holonomic
cohomology, the duality morphism

€yt :DR(M') —Sol(M)Y

is an isomorphism (in the derived category).

3.2 The Basic Commutative Diagram

(3.2.1) PROPOSITION. ([Mes], [Me,], [Mes]) The complex Sol(D x)Y = 0% is concen-
trated in degree d = dim X.

PRrOOF. For every integer ¢ > 0, the sheaf Exté;x(ox, Cx) is the sheaf associated to the
presheaf U — Ext{, (0y,Cy). It is enough to prove that Extf, (0, Cy) = 0 for all i # d
and for every Stein open set U C X.

Now, by the Poincaré-Verdier duality (cf. [DP], exp. 5, [Iv], VI) the space Ext¢, (01, Cy)
is isomorphic to the algebraic dual of H**¢(U,0 ), and by the Serre duality [Se], if U is
Stein, the space H>¥~¢(U, 0 /) is isomorphic to the topological dual of H~4(U, wy), but for
such open sets H~*(U,wy) = 0 and then Exty, (0y,Cy) =0, for all i # d. Q.E.D.

12



(3.2.2) Call

¢=h&p,): Extd@X(OX,DX) —>ExtflCX(OX,(CX),

a:=h'a) :wx — Bzt (0x,Dy)

where a is the isomorphism in (2.1.2). Both morphisms are right D x-linear.

As 0% is concentrated in degree d, for every open set U C X we have

LU, Extd _(0x,Cx)) =R‘T(U, Extd _(0x,Cx)[—d]) =
=RT(U,R Homg (0 x,Cx)) =h*R Hom, (01,Cy),

and using the natural isomorphism v (cf. (A.5)) we obtain an isomorphism
Eu - P(U, EJ?t%X (OX, (Cx)) i HOIHD((CU)(O U, (CU[d])

The ey commute with restrictions and each ey is right D x(U)-linear, where the right
D x (U)-module structure on Hompc,)(0v,Cyld]) comes from the left action of D x(U)
on Oy.

The Poincaré quasi-isomorphism &y : C x — €y and the inclusion map &) : wx|[—d] —
U gives rise to a Poincaré-De Rham morphism in the derived category

k' = (rkyld]) tory[d] : wx —Cx]d].

We will denote by Gy : I'(U,wy) — Hompc,)(0y,Cyld]) the composition of ('), with
the map

forget
I'U,wx) = Home, (Oy,wy) RN Homc,, (0, wy) = Homp(c,) (0 v, wo).

In corollary (3.2.5) we will see that [y is right D x(U)-linear.
Recall that (cf. (2.1.2))

a = ayor : wy|—d] — Homy, (Spy,D x) = D(Spy),
and denote

B = (K})«o (forget) : wx[—d] — Home, (0 x,Qx),
where “(forget)” is the morphism

forget
—

wx|[—d] = Homy, (0 x,wx[—d]) Homg (0 x,wx[—d]),

13



and

v = (ay). : Homp, (0.x, Q) = Homg, (0.x,50l(Spy)).

(3.2.3) PROPOSITION. The following diagram of complexes of sheaves of vector spaces

D(Spy) —— Homp. (0 x,S0l(Spy))
o] ] 3)
wx[=d] =2 Homg_(0x,y)

18 commutative.

PROOF. As ol = (3 = 0 for all i # d, we need only to prove that ¢%oa? = 79,34, but
Sol(D x) = Ox is a complex vanishing in degrees different from 0 and then there is no
signs in the expression for £ (cf. (A.2)). We deduce that the degree d part of the diagram
(3) can be identified with the diagramm

Hom@X(Sp)_(d, Dx) _pat: | Homc, (0 x, HomDX(Sp;(d, 0x))

adT (“f)*% (4)

forget
wx — Home, (0 x,wx).

For a top differential form 6 on an open set U C X, the section
¢ = a*(0) € T'(U, Homp, (Spy”, D x)) = Homqp,, (Sp;%, Dvr)

is given by
d(d+1)
2

P(P®6)=al(l®@1)(P®§) =(—1) P-{(6,0).

Call ¢ € T(U, Home, (0 x, Homp, (Spx%, 0 x))) = Homg, (0y, Homyp, (Sp;?,0v)) the
morphism determined by ¢. For each local section f of Oy we have

d(d+1) d(d+1)

V(P ®6)=p(P@0)(f)=(=1)"2 (P-(5,0)(f) =(=1)"= P({0,0)[).
On the other hand, the section
@' = forget(0) € T'(U, Homc, (0 x,wx)) = Homg, (0, wy)

is given by ¢'(f) = f0. Call ¥/ = (a).(¢') = adoy’ € Hom@U(OU,Hom@U(Sp[}d,OU)).
We have

d(d+1)

V()P @0) = ai( (HP @) =af(fO)(P @0) = (=1)"= P({s, f0))

14



and we conclude that the diagram (4) is commutative, and then (3) too. Q.E.D.

(3.2.4) PROPOSITION. For every open set U C X, the following diagram of vector spaces

INQOAS
T(U, Extd (0x,Dx)) —h DU, Eatd_(0x,Cx))

F(U,a)T: 6UJ/2

I'U,wy) B, Homp ¢,y (0 v, Cyld])

18 commutative.

PROOF. Let us call ay : hT'(U,wx|[—d]) — T'(U,wx) the identity map,
by = the composition of

(can)

hiT(U,D(Spy)) <= RT(U, D(Spx)) RIT(U,D(Spy)) = R T(U,D(0x)) =
=RT(U, Ext$ (0 x,D x)[—d]) = (U, Bxt, (0x,D x)),

cy = the composition of

(can)

hIT(U, Homg (0 x,Sol(Spy))) =5 RIT(U, Homg (0 x,Sol(Spy))) —

(can) 4
—5

RID(U,E Homp, (0x,80l(Spy))) = R*T(U.E Homg, (0 x,50l(0x)))

0 U, 0%) = R DU, Bt (0x.C.x)[~d]) = (U, Bt (0x.C.x)),

and dy = the composition of

(can)

h'D(U, Home, (0 x, Q) = RT(U, Homg, (0 x, Q) RT(U, R Homg, (0x,)) =

: N . (kp)x !
= hdR HOIIICU (O U, QU) T) HOIIlD((CU)(O U, QU[d]) -, HOl’IlD((CU)<O U,(CU[d]).

~

We are going to prove that the following relations:

F(U, CY)OCLU = onhdF(U, Oé'), F(U, f)obU = CUohdF(U, 5),
€UoCUohdF(U, (’7)) = dU, 5U06LU = dUohdF<U, B)

hold, and then we can conclude by using proposition (3.2.3).

The first relation T'(U, a)oay = byoh'(U,a’) is an straightforward consequence of
the facts that o and a induce the same isomorphism in D’(Cx) (cf. (2.1.2)), and
that the isomorphisms a and «[—d] coincide after the canonical identification D (0 x) =
ExthX (O X 'Dx)[—d].

15



The second relation T'(U, €) oby = cyohT(U,€) comes from the standard properties
of the total derived (bi)functors R Hom (—, —) and of the natural morphism
£ :R Homy (—,7) —R Homg, (Sol(?),Sol(—))
(cf. (A.4)), and from the fact that the morphisms &5 and {[—d] coincide after the
canonical identifications D (0 x) = Ext§, (0x,Dx)[—d], 0% = Eatl (0 x,Cx)[—d).
The third relation ey ocyoh?T(U, (v)) = dy follows from the commutativity of the

following diagram

R‘T(U,R Homg (0x,Cx) RGN RIT(U,R Homg (0 x,Qy))

h' R Homg, (0y,Cyp) o), h® Homg, (0y, Q)

(rp[d])« .
HOIHD((CU)(O U,(C(][d]) —_— HOHID((CU)(OU,QU[CZD
and from standard naturality properties.

The last relation Syoay = dyohT(U, 3) is a consequence of the commutativity of
the following diagramms (see (A.7))

ca

h*Homg, (0y,Q) —— h'R Homg, (0y, Q)

l/gJ/ le
HomK(@U)(O U,Q'U[d]) AN HOHID((CU)<O U,Q'U[d])
and

d .
(U, wx[—d)) 222N (U, Homy, (0 x, Q)

T(U,wy) 2 hiHomy, (04, )

forget l I/g J{

(r1[d])« )
Hompg (¢, ) (0 v, wr) LA Homg ¢,y (0 v, Qyd])

where 3'(6) is the cohomology class of T'(U, 34)(6) for every top differential form 6 on U.
Q.E.D.

(3.2.5) COROLLARY. For every open set U C X, the morphism

ﬁU : F(U,CUX) _>H0mD((CU)<OU7(CU[d]>
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is right D x (U)-linear.

3.3 Compatibility of the Duality Morphism with the Serre and
the Poincaré-Verdier Dualities: Mebkhout’s Proof

(3.3.1) For each open set U C X we consider the analytic trace morphism Try :
H4(U, wy) — C and the topological trace morphism try : H24(U,Cy) — C given by inte-
gration of top differential forms (of type (d,d)) with compact support:

The smooth De Rham complex
0 —-Cx —>8g( — —>8§§l —0
gives rise to a morphism in the derived category 6, : £2¢[—2d] — Cx which induces

another one

R2T.(U,61
—_—

0, : T (U, 20 = R¥ T, (U, e 2[—2d]) L H2(U, Cy).

The topological trace morphism is defined by the relation: tryo6; = fU.
In a similar way, the Dolbeault resolution

do 0 0 ,dd __ .2d
0wy —&y —--—&yg =¢&% —0

gives rise to a morphism in the derived category 6, : £€%![—d] —wx inducing another one

RT(U,02)
_—

Oy : T (U, &%) = RT (U, e ¥[—d]) HY(U, wy).

The analytic trace morphism is defined by the relation: Try o6, = fU.

The Poincaré-De Rham morphism k' : wy —C x|[d] induces a map

By - Hi(U,wy) —H(U,Cyld]) = HX(U,Cy).
A straightforward computation shows that &’ofy = (—1)%,[d], and then we obtain
tryo By = (—1)"Try. (5)
The analytic Serre pairing [Se]
(=, —)s: D(U,wx) x HA(U,0y) —C

is given by the composition of the analytic trace morphism Try with the Yoneda pairing

Yoneda

U, Home, (0, wy) x HA(U, 0) % HA(U, wy).

F(U7 WX) X Hzl<U7 0 U)
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The vector space I'(U,wyx) has a natural Fréchet-Schwartz structure and, if U is
Stein, the pairing (—, —) g identifies HY(U, 0 y) with the topological dual T'(U, wx)'. Then,
H4(U,0y) carries a natural DFS structure and I'(U,wx) ~ HY(U,0y)" (cf. [Se], [B-S],
ch. 1, 81 (c¢), 2.1).

The Poincaré-Verdier pairing (cf. [DP], exp. 5)
<—, —>pv : HOIHD((CU)(O U, CU[d]) X Hg(U, OU) —C

is given by the composition of the topological trace morphism tr; with the Yoneda map

Homp c,)(0v, Cyld]) x HAU,0y) —== H2(U, Cy).

According to the Poincaré-Verdier duality, the pairing (—, —) py indentifies Homp ¢,y (0 v, Cyd])
with the algebraic dual H4(U, 0)* (cf. loc. cit.).

(3.3.2) LEMMA. The Serre pairing is D x(U)-balanced.

PROOF. Let ¢ be a class in HY(U,0y), § € T'(U,wx) and P € Dx(U).. For each
i,j =0,...,dlet & be the sheaf of smooth differential forms of type (4, j). The Dolbeault

resolution

l 9
0—=0y —>€?j0—>--- —>8%d —0

(resp. 0 —wy — &Y’ LA gS?jd —0)
is a complex of left (resp. right) D y-modules (cf. [?]), and the morphism
0, d,e
ON el —el

is a lifting of 0 : Oy —wy. Let a € T'.(U, S?j’d) a section representing the class c. We have

(9,Pc>5:---:/U«9/\(Pa), (9P,c>5:---:/U((9P)/\Oz.

Both integrals coincide when P is a holomorphic function. For the general case we can
work in local coordinates z = (z1,...,24),Z = (Z1,..-.,24), and it is enough to consider
P =0,,. Let a = fdz, § = gdz be the local expressions. We have Pa = f, dz,0P =
P'(g)dz = —g..dz, where P is the transposed operator. The difference (Pc, 0)s— (c,0P)g
is the integral of the closed form (fg).,dzdz, and then it vanishes. Q.E.D.

(3.3.3) LEMMA. The Poincaré-Verdier pairing is D x(U)-balanced.

Proor. This is a consequence of the easy fact that the Yoneda map
(_7_)
HomD((CU)(O U (CU[d]) X Hg<U7 0 U) - sz(Uu (CU)
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is D x(U)-balanced. To see that, take ¢ € HY(U,0y), ¢ € Hompc,)(0v,Cyld]) and
P eDx(U) C Home, (0Op,0y). Then we have

(¢, Pc) = (¢, Pu(c)) = pu(Pi(c)) = (¢P)«(c) = (pP;c).

Q.E.D.
(3.3.4) PROPOSITION. The following relation
(= =)pve(Bu x Id) = (=1)*(~, —)s
holds.
PRrROOF. According to the definition of gy, the following diagram
I(U,wx) x H(U,01) S HAU, wy)
- )|
Homp c,) (00, Culd]) x BAU, 0p) =% HX(U,C)
is commutative. The propostion then follows from (5). Q.E.D.

(3.3.5) PROPOSITION. For each Stein open set U C X, there exist natural right D x (U)-
linear isomorphisms

such that the following diagram

(U
D(U, Bxtd_(0x,Dx) ——h DU, Extt (0x,Cx))

HCCZ(U,OU)/ inclusion Hg(U,OU)*

commautes.

PROOF. It is a consequence of propositions (3.2.4), (3.3.4), of lemmas (3.3.2), (3.3.3)
and of Serre and Poincaré-Verdier dualities. Q.E.D.

(3.3.6) According to (2.1.2), corollary (2.2.3) and proposition (3.2.1), the question in
the theorem (3.1.1) is equivalent to prove that

E® Idye - E-Ttd@X(OX;‘DX) ®Dx 7 %Ext%X(OX,Cx> ®DX M
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is an isomorphism.

We can suppose (cf. [M-Nj], IL.5) that M is a single holonomic module M. The
problem being local, we can also suppose that there exists a finite free resolution P

0 =Dy —--- =D —-M —0.

We have to prove that
@ 1dy 1 Eat], (0x,Dx)®py P —Eatd (0x,Cx) ®py P

is a quasi-isomorphism.

According to proposition (3.3.5), for each Stein open set U C X the morphism I'(U, £ ®
Idy.) can be identified with

H(U, 0] — - — [H{U,04)°]
[Hg(U,OU)Tm}* — e — [Hg(U7OU)TO}*.
But the complex
. umd
Hg<UvoU)Tm AR (UvOU)TO

is quasi-isomorphic to R I'.(U,Sol(M)) (up to some shift), and so, by Kashiwara’s con-
structibility theorem [Ka] (see also [M-N3]) and by proposition (1.1.3), it has finite dimen-
sional cohomology for all small balls U with respect to some local coordinates. According
to Serre’s lemma for DF'S spaces [Se], 10.1, [B-S], ch. 1, §1 (c), we deduce that I'(U, {®1dy.)
is a quasi-isomorphism for many open sets U, and then £ ® Idyp- is a quasi-isomorphism
too.

(3.3.7) REMARK. The duality morphism DR (M) —Sol(M")" considered by Mebkhout
in [Meg], IT1.1.1 comes from the isomorphisms Ay and gy of proposition (2.2.2) and from
the morphism ExthX (0x,Dx) ~wx — ExtﬁiCX(O x,Cx) induced by Serre and Poincaré-
Verdier dualities. According to proposition (3.3.5), Mebkhout’s duality morphism coin-
cides with the formal one.

3.4 Compatibility of the Duality Morphism with the Local An-
alytic Duality: Kashiwara-Kawai’s proof

Let M be a bounded complex of left D x-modules with holonomic cohomology. In order
to proof the Local Duality Theorem (3.1.1) it is enough to proof that the stalk

(€3 )e : DR (M), —Sol(M)

T
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is an isomorphism for every point x € X.

Let i : {x} — X be the inclusion. Denote
Sol(M') := R Homjp, (M},70x), DR,(M’):=R Homy,  (0x.a4 M,).
We have a natural isomorphism (cf. (A.11))
i'o Sol = Sol, (6)
which induces, joint with (2), another one

SOZ!I<O X) ~ i!(CX. (7)

Call
Ene () i DR,(M ) —R Homi (S ol (M), 4'C x)

the natural morphism defined as in definition (2.2.1), now using (7) instead of (2).

Call
¢ :Sol(M')Y —R Homg(Sol,, (M), i'Cx)

x

the composition of the natural morphism (cf. (A.11))
R Homg (Sol(M'),Cx), —R Homg(i' Sol(M),i'Cx))
with the isomorphism induced by (6).

(3.4.1) LEMMA. Let M~ be a bounded complex of left D x -modules. The following diagram

nat. CJ/
DR, (M) 2%, R Homi (S ol (M), 4'C x)
18 commutative.

PROOF. It is a consequence of lemma (A.12). Q.E.D.

(3.4.2) COROLLARY. Let M be a bounded complex of left D x-modules with holonomic
cohomology. Then, (€. )s i an isomorphism if and only if (&,,.)(x) is an isomorphism.

PRrROOF. As M’ has coherent cohomology, the natural morphism

DR(M ), —DR,(M")
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is an isomorphism. Also, as M~ has holonomic cohomology, by the constructibility theorem
of Kashiwara [Ka] (see also [M-N3]) and by proposition (1.2.3), the morphism ¢ is an
isomorphism. We conclude by applying the preceeding lemma. Q.E.D.

We can repeat the arguments in proposition (2.2.2) and corollary (2.2.3) to obtain the
following.

(3.4.3) PROPOSITION. For every bounded complex of left D x-modules M with coher-
ent cohomology objects, the duality morphism €. (x) is an isomorphism if and only if
Ep (2) ® Idy, is an isomorphism.

Now, we are going to give the punctual analogous of results in section 3.2.

First, the complexes DR, (D x) and i'O x are concentrated in degree d and we have an
isomorphism of right D x ,-modules

a(r) = h¥(nat.) o, : wx 4 = hiRr Hom'DX’I(O X Dxg) = ExthX’z (Ox2,Dxz)-

The complex i'C x is concentrated in degree 2d (cf. (1.2.2)). We then obtain that the
complex R Homg (S ol (D x),i'C x) = R Homg ('O x,i'C x) is also concentrated in degree
d, and we have a canonical identification

HomD(@)(z’!Ox, i'C x[d]) = Home (HE(0 x ), H2(C y)).
Call
£(z) == h*(€p (2)) Extd@x@(o XD xa) —Extd(i'0 x,i'Cx),

which is right D x ,-linear.

As in 3.2, we find an isomorphism

e(r) : Extd(i'0 x,7'C x) = Hompc(i'0 x,4'C x[d]) = Home(H2(0 x), H24(C x))
and a map
B(z) : wx,, —Homp ) (i'0 x,i'C x[d]) = Home(H2(0 x), H24(C x)),

which are compatibles in the obvious way with the ey and the fy defined in (3.2.2), for
rel.

The following proposition is then a direct consequence of proposition (3.2.4).

(3.4.4) PROPOSITION. For every point x € X, the following diagramm

Exth, (0 x:D x) @ Exd (o x,d'Cx)
a(r)Tz s(x)lz
B(x) J o
WXz —— Hom¢(H%(0 x), Hi*(C x))
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18 commutative.

As in (3.3.1), call

a) Tr, : HY(wx) —C the local analytic trace morphism, which is induced by the global
analytic trace morphism Try,

b) 3 (x) : HY(wx) — H24(C x) the morphism induced by the Poincaré-De Rham mor-
phism wy —C x|[d],

c) {(—,—)%:wy, x HY(0 x) —C the local duality pairing obtained by composing the
local analytic trace morphism Tr, with the Yoneda pairing,

d) (—, )P : Homc(H2(0 x), H24(C x)) x HY(0 x) —C the composition of the punctual
topological trace tr, (see (1.2.2)) with the evaluation map.

As in (3.3.1), we have the following assertions:

1. The pairings (—, —)%" and (—, —)i? are D x ,-balanced.

2. (=, =)o (Bx) x Id) = (=1)%(—, —)".
Using the Local Analytic Duality Theorem (cf. ?7), we obtain the following.
(3.4.5) PROPOSITION. There exist natural right D x ,.-linear isomorphisms

Hi(0x) = Exth, (0xzDxa)
He(0 x)* = Ext(i'0 x,4'Cx)

such that the following diagram

Extd@xl(o XD xa) @, ExtZ(i'0 x,i'Cx)

Hg(oX), inclusion Hg(ox)*

commutes.

The following punctual duality of Kashiwara [Ka], §5 can be deduced from propositions
(3.4.3) and (3.4.5) in a similar way we did in (3.3.6).

(3.4.6) PROPOSITION. Let M be a bounded complex of left D x-modules with holonomic
cohomology. Then, the punctual duality morphism

Exe.(2) i DR (M) —R Homp (S ol (M), i'C x)
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1s an isomorphism for each point v € X.

(3.4.7) COROLLARY. Let M be a bounded complex of D x-modules with holonomic
cohomology. Then

Exth, (0x0 M) = Extdp—;w(m L HY0x))
for each i € 7, and for each x € X.
Finally, according to corollary (3.4.2), we deduce that the morphism

(EJV[):E : ]D)R(M')ac —)SOKM.)Z

is an isomorphism for each x € X, and the proof of theorem (3.1.1) is finished.

(3.4.8) REMARK. Actually, proposition (3.4.6) and corollary (3.4.7) do not match
exactly the statement in [Ka], §5. The relation between both results becomes clear by
considering the dual complex (M')* (cf. (3.5.3)). Anyway, the point is to prove that
the punctual duality morphism &, (z) induced by the (formal) duality morphism &,.
coincides with the isomorphism in loc. cit..

3.5 Some Complements

(3.5.1) In a similar way we defined the duality morphism in (2.2.1), we find for every
bounded complex of left D x-modules M~ with coherent cohomology a natural morphism

My Sol(M) —DR (M )Y
by composing the natural morphism (cf. (A.2))
n:R Homp (M',0x) —R Homg, (DR(M'),DR(0x))

with the isomorphism induced by & (2).

Call 3. := R Homx (1, Cx) and Bppy the biduality morphism corresponding to
DR (M) (cf. (1.1.2)). According to (A.3) we have &pg ey = M5 ©Bprw)> and we obtain
the following corollary of the LDT.

(3.5.2) COROLLARY. For every bounded complex of left D x-modules M with holonomic
cohomology, the natural morphism

My : Sol(M) —-DR(M")Y

is an isomorphism (in the derived category).

24



(3.5.3) For every complex of left D x-modules M", its (internal) dual is defined by
(M)* := Homo, (wx,D(M"))[d], which is again a complex of left D x-modules (cf. [Cal,
1.1). The internal duality induces a self-(anti)equivalence of the derived category D%(D x).

The isomorphism a of (2.1.2) induces natural isomorphisms 0% ~ 0 x and
Sol((M)*) = DR(M")
for every bounded complex of left D x-modules M~ with coherent cohomology.

(3.5.4) COROLLARY. For every bounded complex of left D x-modules M with holonomic
cohomology, there exist natural isomorphisms

Sol(M)*) = sol(M)Y, DR((M)*) = DR(M)".

(3.5.5) DEFINITION. A bounded constructible complex X~ € Db(C x) satisfies the support
conditions if it is concentrated in degrees [0,d] and if dimsupph'K < d — i for each
i=0,...,d. If both X' and its dual (X")" satisfy the support conditions we say that X is
a perverse sheaf.

The full subcategory of D(C x) whose objects are the perverse sheaves is known to
be abelian (cf. [B-B-DJ).

If M is a holonomic D x-module, according to [Ka] we know that Sol(M) and DR (M )
satisfy the support conditions (cf. also [M-N], prop. 3). The LDT gives us the following
result.

(3.5.6) PROPOSITION. If M is a holonomic D x-module, the complexes Sol(M) and
DR (M) are perverse sheaves.
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Appendix

In this Appendix we have collected some results on the extension of some functors, natural
transformations and commutative diagrams to the category of complexes. A complete
reference for these constructions is [Dey], 1.1 (see also Erratum in [SGA 43], p. 312). We
have extracted from there (some of) the results we need and, for the ease of the reader,
we have stated them in a very concrete way.

(A.1) Let Rx be a sheaf of rings on a topological space X, let ®% be a sheaf of rings
contained in its center and let R° the global sections of R
The functors
Homy (—,—): C(Ryx) x C(Ryx) —C(R"),
Homy (—,—): C(Rx) x C(Rx) —C(R%)
— @y =1 O(,Rx) x C(®x) = C(R%)
are defined with the usual conventions.

Given two complexes of left R x-modules F°,7°, the complex A" = Hom'RX(fT ) is
defined by A" = [[,_,_, Homg, (37,77) and the differential d4(h) = dyoh—(—1)%ehody.
The complex Homgy (F°,7°) is defined in a similar way.

Given a complex of right (resp. left) R x-modules N* (resp. M), the complex B* =
N ®ng M is defined by B" = @, ;_, N Oy M* and the differential dg(y ® x) =
(dny) @ x + (—=1)%8¥%y @ (dyx). The action of these functors on morphisms are defined

in the direct way (no signs are involved).
The complex §° = 3°[1] is defined by §" = 3" and dg = —dg-.

We have derived functors

R Homy (—,—): D*(Rx) x DT (®x) —D*(R°)
R Homiy (—,—) : D*(Rx) x D*(Rx) — D*(®%)

for x =«=0 or x = —, x =+, and
~®zy — D7 (,Rx) x D™(Rx) — D (R%)

(cf. [Ha], I1, §3, §4; see also [Sp] in order to avoid boundedness conditions on complexes).

(A.2) Given three complexes 3,7, 9" of left R y-modules, we define a natural morphism
in C(®%)

£ Homgy (37,7) ﬁHombzg((Homgzx(J',H'),Homgzx(?',ﬂ'))
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in the following way

€ (h)(a) = (~1)ldeehdedlg p,

In a similar way we define a natural morphism
n : Homg (57,7) eHomﬁzg((HomiX(H',?'),Hom'yX(H',J'))

by putting 7' (h)(b) = hob.

If 3 = Ry, we have an obvious identification (no signs are involved) between the
identity functor of C(Rx) and Homgy, (R x,—), and then we obtain a natural “biduality
morphism”

g g HHomig((Homgzx(J',a'),H')

given by 3'(h)(a) = (—1)“eMdeDa(p).

Given three complexes 3°,9°,3" of left ® x-modules, call X* = Homy (3°,9), £
Hom.ﬂ{x(r‘fyji)a M = Homhﬂlx(jlagjh)a S = HOmROX(L):K) and oM =G, (7])*
Hom.jlg((n.7j<.)7

gL HHomig{(Hom@X(L',J('),K') = Hom'j{g{(g',x')
the natural morphisms defined above.

(A.3) LEMMA. With the above notations, the equation (n')*o = & holds.

(A.4) Assume that R% is the constant sheaf associated to a field K. Then, the natural
morphism ¢ induces another one

£ R Homg (57,5) —R Hom'yox(]R{ Homy (G°,%),R Homg (F',5"))

for5 € D™ (Rx) and §', 95" € DT (Rx). For that?, take a bounded below injective resolu-
tion §° —J" and a bounded below injective Godement resolution 5 —3", i.e. 37 = A, 7]
where A is the identity map from the space X, endowed with the discrete topology, to X,
and the J{ are injective sheaves of A™'® x-modules. We then have R Homy (5°,5) =
Homgy (5°,7), R Homy (§,9") = Homyz (5',d") andR Homy (F°,95°) = Homy (3°,3°).
The last complex is a complex of injective sheaves of K-vector spaces because

Homy (3°,0°) = HHomggX(’fp,gp*”) =

PEL

— [] Homa (57, 085+ = A, (H Homa-1z (A7'97, HSM)) |

PEL PEL

2T owe this argument to Z. Mebkhout.
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and so
R Hom'yox(]R{ Homy (G°,%°),R Homg (F',H ")) =
= Hom'yg((HomiX(S',H'), Homy (37,37)) = Hom'yg((]-[omj{x(ﬂ',g'), Homy (37,3)).
The morphism & then comes from the natural morphism
§ : Homg (37,7) eHombzg((HomiX(J',H'), Homy (37,3)).

In a similar way the natural morphisms 3 and 1" induce other ones

B:9 —R Hom'y())((R Homgy (G7,3°), %)
for §,3" € DT (Rx) and

n: R Homgy (37,5°) —R HoméRg{(]Ri Homy (3,37),R Homy (3',5))

for 5,6 € D" (Rx) and 3" € D™ (R x).

The natural morphisms &', 37,7, &, B,n are “cocontractions” in the (co)sense of [Dey],
1.1.9.

(A.5) For each m € Z, we have natural isomorphisms

Homy, (7'[~m],3") 2 Homi, (2',3")[m] <22 Homy (7,4 [m])

given by 1; ,,(a) = (=1)""®%a, n,,(b) = b.

Let 3,77, be three complexes of left R xy-modules and let m be an integer. Call A" =
Homy (7,8°),8" = Homy (5°,3), A, = Homg (3,3°[m]), B,, = Homy (5,3 '[m]) and
Ay, s Homigg (A, B;,) — Homige (A7, B")

the isomorphism obtained by composing

(n2,m)* ni,fm

(13,m)"
= Homig (A[m),8,,) == Homigg (A'[m], 3 [m]) ="

Homiyg (4;,,8,) —2"

M,m

Hom'yg((ﬂ',l%'[m])[—m] — Hom'yg((fl',B')[m][—m] = Hom'yg((fl',ﬂ').

Call

£ Homg (37,7) Hﬂomig((Homng(J',a'),Hom‘jzx(’f',a'))
'€+ Homiy, (3°,7) — Homiyg (Homy (7,3 [m]), Homy (5,3 )
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the natural morphisms.

(A.6) LEMMA. With the above notations, the equality A" o'¢" = (=1)™"™ holds for
everyn € z.

(A.7) For each d € Z, we have obvious natural isomorphisms (there is no signs involved)
d d

Hom (s (7'[—d], 8) <= h* Homg, (9°,8) —> Homy sy (7, 8°[d]).

~

Call v¢: h?R Homy (9°,4°) = Hompx,)(9,d°[d]) the induced “derived” isomorphism.
(A.8) LEMMA. Given three complexes F',9,3" of left R x-modules and an integer d € 7,
the following diagrams

hé Homy_ (57,7°) e, hdHom;Rg((Hom'yX(J',H'),HongX(T,H'))

4| (oot |

Homy (—,d°) ) . . ) o
HomK(fo)(?.vJ.[d]) L) HomK(Rg()(Homin(j [d]ag )7H0mﬂlx(? ,d ))7

de-
heHomy, (57,7 e, hdHomig((Hom'RX(J',H'),Hom'RX(Sf',H'))
I/iiJ/ ((77‘1,(1)’1)* OV‘Qil
Hom;RX(f,H')

HomK(Rx)(?.[_d]a j.> - HomK(Rg()(Hom.RX <j.a 3), Hom.SRX (?[—d], H))

are commutatives.

(A.9) Given four complexes P ,M", 4, D" of left R y-modules, a complex ¥ of R%-
modules and a complex Q" of (R x, R x)-bimodules, we define natural morphisms

Ay : Homgy (P7,Q°) Dy M — Homgy (P',Q Ry M)
Ay + Homgy (Q° ®qu M,3°) — Homyz (M, Homgy (2,3°))

o« Homig (D°,5°) R, M — Homiy (Homiz, (M, D), 5)

by
A (B ® ) (z) = (=1)s I p(2) @ 2
Xy (@) (v)(u) = (1)l g (u @ v)
1@ w)(c) = (—1)1 s p(c(w)).
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(A.10) LEMMA. Given three complexes P, M, 3" of left R x-modules and a complex Q°
of (R x,Rx)-bimodules, the following diagram

Homig (9',0" ©x, M) —— Homigg (Homiy, (0" ®x, M',8"), Homip, (9,8°))

5| 0" oo |
: DA . &old . : . : N :
Homy (P°,Q7) @ M =—— Homgg (Homy (2°,3"), Homy (P",37)) @y M
1s commutative. In particular, if ° = R x, then we obtain a natural commutative diagram

HomRX(T ;M ) - HOmng((HO’fTLRX(M yd )7H0mfRX({‘P »d ))

XT “W

. ) . . E®ld . . . N .
Homy (P, Rx) Qry M Lon Homyy (37, Homzy (P,37)) @z M.

(A.11) Leti: F — X be a closed immersion and denote Rp = i 'Ry, R% = i71RS.
Given left R xy-modules 79,7, there are well known canonical natural morphisms
(i19,i7'9)
(i9,49)
g:i Homg, (7,4) = Homg, (i '9,4'9).

f it Homg, (9,9) — Homg,,

n it Homg, (9,d) — Homgx,

They induce natural morphisms f',n’, g at the level of complexes in the obvious way (no
signs are involved).

Given two complexes 7,9 of left R-modules, consider the following natural mor-
phisms

n it Hom'po(J',g') eHomi%(i!J',i!H'),

piit Homgq (9,9) ﬂHomi%(HomR%(i_l Hom'yg((?,g'),i!H'),z’!H’),
()" + Homiyg (i Homig (Homig (1°,8),8'), ) — Homizg (19,13
the morphism induced by i'3 :i'7" — ' Homyo (Homug (3,3°),3") and

(97)" + Homag (Homug (i Homag (1,3°),4°),03") — Homuy (i Homag (Homipg (7,3),3),1'4)
the isomorphism induced by
g i Hom'gzg((Hom'Rg((J',H’),H’) = Hom'jz%(z'_l Hom;Rg((fJ',H'),i!H').
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(A.12) LEMMA. With the above notations, the equality n” = (i'3)*o(g)*o 3 holds.

Given three complexes F,7°,9 of left R x-modules, consider the following natural
morphisms

i1 i Homy (97,97) —i! Hom'ROX(Homj{X(J',H'), Homy (37,3))
[t Homy (F°,9°) — Homiy, (79, i7'7")
£ Homsz(i_lff',i_lfJ') ﬁHomi%(HomiF(i_lj',i!H'),Hom'RF(i_l?',z'!H'))

and

noiit Hom'yg((Hom'RX (9,8°), Homy (37,3")) ﬁHomi%(HomiF(i_lﬂ',@'!3'), Homgy, (i7'9", i'97))
the morphism induced by

noit Hom'yg((Hom'RX(f]',H'), Homgy (5°,3")) —>H0m'5{%(i! Hom'jzx(f]',g'),i! Homy (37,3))

and the isomorphisms

i' Homy (9°,4") N Homiy, (i™'9,i'3"), i Homy (5°,4) RN Homiy, (i™'57,i'7").

(A.13) LEMMA. With the above notations, the equality n'o(i7'€) = & o f holds.

(A.14) Let p : Y — X be a continuous map between topological spaces and denote
Ry = p 'Ry, RY = p7'R%. Given two left Ry-modules A, B, the well known natural
morphism

h:p. Homg, (A,B) — Homg, (psA,p«B)

induces a natural morphism A" at the level of complexes in the obvious way (no signs are
involved).

Given three complexes of left Ry-modules A", B", €', consider the following natural
morphisms

P& i pe Homyp (A7, B) — . Hongg/(Hom'yy(B', e’), Homy (A", €))

h':p. Homg (A, B') — Homgy, (pwA ', p«B’)

mo:ps Hom'yoy(Hom'yy(B',G'), Homgy (A, €)) —>H0m'j{g((p* Homgy (B',€"), Homy (p.A’, p«€’))
the morphism induced by using h* twice, and

q : Homy (p.A",p.B") — Hom.gg (p« Homgy (B, €"), Homy (p.A",p.C"))
the morphism induced by & and A'.

(A.15) LEMMA. With the above notations, the equality ¢ oh" = m o (p.£’) holds.
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