
PREPUBLICACIONES DE LA FACULTAD DE MATEMÁTICAS
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Introduction

These notes are issued from a course taught in the C.I.M.P.A. School on Differential
Systems, held at Seville (Spain) from September 2 through September 13, 1996. They are
an improved version of the handwritten notes distributed during the School.

The aim of these notes is to introduce the reader to the Local Duality Theorem in
D-module Theory —LDT for short— and to explain in a detailed way the proofs of it
in [Me3], [K-K]. This theorem asserts that the Verdier duality for analytic constructible
complexes interchanges the “De Rham” and the “Solutions” of every bounded holonomic
complex of D-modules on a complex manifold. Besides the importance and the beauty
of such a result, it is a good representative of the relationship between discrete and
continuous coefficients, an important idea in contemporary Algebraic Geometry.

The first published duality type result is a punctual one due to Kashiwara [Ka], §5. The
LDT in the way we currently use was first stated by Mebkhout in [Me2], 4.1, [Me1], 5.2,
but its proof depended on a still conjectural theory of Topological Homological Algebra. A
complete proof was given in [Me3], III.1.1 (see also [Me4], 1.1, [Me5], ch. I, 4.3). Kashiwara
and Kawai proposed another proof in [K-K], 1.4.6 based on the punctual result above.

The proof of the punctual result of Kashiwara uses the Local Duality in Analytic
Geometry (residues). Mebkhout’s proof of the LDT uses Serre and Poincaré-Verdier
dualities to construct the duality morphism and to prove it is an isomorphism. Kashiwara
and Kawai define the duality morphism as the formal one and reduce the proof of the
LDT to the former result of Kashiwara by means of the Biduality Theorem for analytic
constructible complexes. However, this reduction demands the commutativity of some
diagram involving the global formal duality morphism and the punctual one, which is not
obvious. Both proofs are evidently based on the Kashiwara’s Constructibility Theorem.

In these notes we prove that the duality morphism defined by Mebkhout coincides
with the formal one and, as a consequence, that the diagram needed in Kashiwara-Kawai’s
proof is commutative. This fact is explained by the relationship between the Global Serre
Duality and the Local Duality in Analytic Geometry (cf. [Li]).

As we could expect, to do the task we need to be especially attentive to the definition
and the properties of the different formal objects involved. In particular, we have to
manage some signs. A complete reference for these questions is [De2], 1.1. For the sake
of completeness and for the ease of the reader, we have collected (a big portion of) them
in the Appendix.

Other somewhat different proofs of the LDT are available in [Bo2], §19, [Sa], 2.7, [Bj],
III, 3.3.10. We have chosen to present the first proof of the LDT, due to Mebkhout, and
the proof of Kashiwara-Kawai because they are conceptually simple and they fit in this
collective work as a continuation of [M-S].
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Notations

Given a sheaf of rings RX on a topological space X, we shall denote by C∗(RX), K∗(RX)
and D∗(RX) the category of complexes, the homotopy category of complexes and the
derived category of the abelian category of left RX-modules respectively. We shall use

rRX for referying to the category of right RX-modules.

The symbols A·,B·,C·, etc. will be used for complexes of sheaves on a topological
space: the objects of A· are the An and the differentials are dnA : An −→An+1, for every
n ∈ Z.

Given a complex A· and an integer d, we shall denote by hd(A·) its dth cohomology
object.

Given a complex A· (of objects in some additive category), the complex A·[1] is defined
by A·[1]n = An+1, dA·[1] = −dA.

The total derived functors of Hom·RX
(−,−),Hom ·RX

(−,−) and −
·
⊗RX

− will be de-

noted by RHom·RX
(−,−),R Hom ·RX

(−,−) and of−
·
⊗⊗⊗RX
− respectively, and ExtdRX

(−,−) =
hdR Hom ·RX

(−,−).

If RX is the constant sheaf associated to a fixed ring K and no confusion is possible,
we shall abreviate Hom·KX

(−,−), Hom ·KX
(−,−), R Hom ·KX

(−,−) and ExtdKX
(−,−) by

Hom·X(−,−), Hom ·X(−,−), R Hom ·X(−,−) and ExtdX(−,−) respectively.

§1 Duality for Analytic Constructible Sheaves

Throughout this section X denotes a connected complex analytic manifold countable at
infinity of dimension d, and Db

c(CX) the derived category of bounded complexes of sheaves
of C-vector spaces with analytic constructible cohomology (cf. [Ve], [Ka], [M-N3]). We
denote TX = CX [2d].
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1.1 The Topological Biduality Morphism

The abelian category of sheaves of complex vector spaces over X has finite injective
dimension (cf. [DP], exp. 2, 4.3). The functor R Hom ·X(−,−) induces a functor

R Hom ·X(−,−) : Db(CX)×Db(CX) −→Db(CX)

which can be computed by taking injective resolutions of the second argument, or locally
free resolutions of the first argument if they exist.

(1.1.1) Proposition. If F·1,F
·
2 are two complexes in Db

c(CX), then R Hom ·X(F·1,F
·
2)

is also in Db
c(CX). Furthermore, if the F·i are constructible with respect to a Whitney

stratification Σ of X, then R Hom ·X(F·1,F
·
2) is also constructible with respect to Σ.

Proof.
1 We can suppose that the F·i are single constructible sheaves Fi (cf. [M-N3],

II.5). The question being local (cf. loc. cit., I.4.21) we can suppose that F1 = σ!L, for
σ : S ↪→ X the inclusion of a stratum of Σ and L a local system (of finite rank) on S (cf.
loc. cit., I.4.14). In this case we have R Hom ·X(σ!L,F2) ' R σ∗R Hom ·S(L, σ!F2), and we
can conclude by induction on the dimension of X and Thom-Whitney’s isotopy theorem
(cf. loc. cit., I.4.15). Q.E.D.

(1.1.2) Definition. For every bounded complex F· in Db
c(CX) we define its dual by

F
·∨ := R Hom ·X(F·,CX)

and the topological biduality morphism βF· : F· −→(F·∨)
∨

as in (A.2).

(1.1.3) Proposition. If F· is a bounded constructible complex on X, then for each point
x ∈ X and for every small ball B centered in x with respect to some local coordinates, the
complex R Γc(B,F

·) has finite dimensional cohomology.

Proof. According to proposition (1.1.1), the complex F·∨ is bounded and constructible.
Then, for every small ball B centered in x, the canonical morphism RΓ(B,F·∨) −→(F·∨)x
is an isomorphism (cf. [M-N3], I.4.16) and we conclude by the Poincaré-Verdier duality

R Γ(B,F·∨) = RHom·B(F·|B,CB)
'−→ RHom·C(R Γc(B,F

·),C)[−2d]

(cf. [DP], exp. 5). Q.E.D.

1This proof is also valid in the case of an arbitrary complex analytic space.
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1.2 The Biduality Theorem

The Biduality Theorem for analytic constructible sheaves has been first stated and proved
by Verdier in [Ve], 6.2 using Resolution of Singularities. Other proofs in the setting of
cohomologically constructible sheaves are available in [DP], exp. 10, §2, [Bo1], V, 8.10,
[K-S], 3.4. We sketch here a proof following the lines in [SGA 41

2
], Th. finitude, 4.3 and

[M-N3], III.2.1,III.2.6 and based on the Poincaré-Verdier duality cf. [DP], exp. 4,5, [Bo1],
V, 7.17, [Iv], VII.5.2, [K-S], 3.1.10.

(1.2.1) Theorem. For each bounded constructible complex F· on X, the biduality mor-
phism βF· : F· −→(F·∨)∨ is an isomorphism.

Proof. We can suppose that F· is a single constructible sheaf F (cf. [M-N3], II.5). The
result is clear if F is a local system (of finite rank).

As the question is local, we can also suppose that X = Dd−1
1 ×D2, where the Di are

open disks in C, F is a local system on the complement of an hypersurface Z ⊂ X and
the first projection p : X→Dd−1

1 is finite over Z (cf. loc. cit., I.4.20).

We can extend our data, first to a constructible sheaf F̃ on X̃ = Dd−1
1 ×C and second to

F = σ!F̃, where σ : X̃ ↪→ X = Dd−1
1 × P1 is the (open) inclusion. Call p : X −→Y = Dd−1

1

the first projection, which is proper.

Let us consider the triangle

F
�F−→ (F

∨
)∨ −→Q· −→F[1] (1)

where the support of the (bounded) complex Q· is contained in Z ∪ (Y × {∞}) and then
it is finite over Y .

By taking direct images by p we obtain a new triangle in Db
c(CY )

R p∗F
R p∗�F−−−−→ R p∗(F

∨
)∨ −→R p∗Q

· −→R p∗F[1]

(cf. [M-N3], I.4.23).

In order to prove that βF is an isomorphism we need to prove that Q· = 0, but that
is equivalent to R p∗Q

· = 0 because p is finite over the support of Q·.

Let TrX/Y : R p∗TX −→ TY be the topological trace morphism for the proper map p.
According to the local form of the Poincaré-Verdier duality (cf. [Iv], VII.5, [K-S], 3.1.10)
the morphism ρK· composition of

R p∗R Hom ·
X

(K·,TX)
nat.−−→ R Hom ·Y (R p∗K

·,R p∗TX)
(TrX/Y )∗−−−−−→ R Hom ·Y (R p∗K

·,TY )

is an isomorphism for every bounded complex of sheaves of C-vector spaces K·.
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Call ρ∗
F

:= R Hom ·Y (ρF,TY ) the isomorphism induced by ρF. According to (A.5), we
can “redefine”

(F
∨
)
∨

= R Hom ·
X

(R Hom ·
X

(F,TX),TX)

and using (A.2) and lemma (A.15) we deduce the relation(
ρR Hom·

X
(F,TX)

)
◦ R p∗βF = ρ∗

F
◦βR p∗F.

By induction hypothesis, the morphism βR p∗F is an isomorphism, then R p∗βF too
and we obtain the desired R p∗Q

· = 0. Q.E.D.

(1.2.2) As X is an connected oriented manifold of (topological) dimension 2d, the topo-
logical trace morphism trX : H2d

c (X,CX) −→ C given by integration of top C∞-forms
with compact support is an isomorphism. Then, for each point x ∈ X, denoting by
i : {x} ↪→ X the inclusion, the canonical morphism i!CX −→R Γc(X,CX) gives rise to a
punctual topological trace isomorphism

trx : H2d
x (CX)

nat.−−→
'

H2d
c (X,CX)

trX−−→
'

C.

(1.2.3) Proposition. Let F· be a complex in Db
c(CX) and x ∈ X. Denote i : {x} ↪→ X

the (closed) inclusion. Then, the natural morphism

n : (F·)∨x = i−1
R Hom ·X(F·,CX) −→RHom·C(i!F·, i!CX)

is an isomorphism. In particular, using (1.2.2), we obtain an isomorphism

((F·)∨)x ' RHom·C(i!F·,C)[−2d].

Proof. As (F·)∨x is a bounded complex of C-vector spaces with finite dimensional
cohomology and i!CX ' C[−2d], the natural morphism (A.2)

β0 : (F·)∨x −→RHom·C(RHom·C((F·)∨x , i
!
CX), i!CX)

is an isomorphism. We also have a canonical isomorphism (cf. (A.11))

g : i!((F·)∨)∨ = i!R Hom ·X((F·)∨,CX)
'−→ RHom·C((F·)∨x , i

!
CX).

Call g∗ := RHom·C(RHom·C(g, i!CX), i!CX) the isomorphism induced by g, and (i!βF·)
∗ :=

RHom·C(i!βF· , i
!CX) the morphism induced by i!βF· , which is an isomorphism according

to theorem (1.2.1). To conclude, we observe that n = (i!βF·)
∗ ◦g∗ ◦β0 according to (A.12).

Q.E.D.

8



§2 The Local Duality Morphism in D-module Theory

Throughout this section X denotes a complex analytic manifold countable at infinity of
dimension d, DX the sheaf of linear differential operators with coefficients in OX (cf.
[G-M], I) and Db

c(DX) the derived category of bounded complexes of left DX-modules
with coherent cohomology.

2.1 The Solution and the De Rham Functors

Here, our basic functor is R Hom ·DX
(−,−) which can be computed by taking injective

resolutions of the second argument, or locally free resolutions of the first argument if they
exist.

Since DX is a coherent sheaf of rings and every single DX-module admits locally a
finite free resolution (cf. [Me5], ch. I, 2.1.16), we have an induced functor

R Hom ·DX
(−,−) : Db

c(DX)×Db(DX) −→Db(CX).

The De Rham functor is

DR = R Hom ·DX
(OX ,−) : Db(DX) −→Db(CX)

and the Solutions functors are

Sol = Hom ·DX
(−,OX) : Kb(DX) −→Kb(CX),

Sol = R Hom ·DX
(−,OX) : Db

c(DX) −→Db(CX).

We will also consider the external duality functors

D = Hom ·DX
(−,DX) : Kb

c(DX) −→Kb
c( rDX),

D = R Hom ·DX
(−,DX) : Db

c(DX) −→Db
c( rDX).

We have Sol(DX) = Sol(DX) = OX .

The De Rham functor can be computed by means of the Spencer resolution Sp·X (cf.

[Me5], ch. I, 2.1.17), whose objects are defined by Sp−pX = DX⊗OX

p
∧ DerC(OX), p =

0, . . . , d and the differential ε−p : Sp−pX −→Sp
−(p−1)
X is given by:

ε−p(P ⊗ (δ1 ∧ · · · ∧ δp)) =

p∑
i=1

(−1)i−1(Pδi)⊗ (δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δp)+

+
∑

1≤i<j≤p

(−1)i+jP ⊗ ([δi, δj] ∧ δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δ̂j ∧ · · · ∧ δp)
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for p = 2, . . . , d and ε−1(P ⊗ δ) = Pδ for p = 1.

There is an obvious augmentation ε0 : Sp0
X = DX −→OX , ε0(P ) = P (1), that makes

Sp·X into a (canonical) locally free resolution of OX as left DX-module. We will always
consider this augmentation to identify the functors DR(−) = Hom ·DX

(Sp·X ,−).

Every left DX-module E carries an integrable connection ∇ : E −→ Ω1
X ⊗OX

E and we
can then consider its classical De Rham complex Ω·X(E) (cf. [De1], I.2). It is defined by
Ωp
X(E) = Ωp

X ⊗OX
E for p = 0, . . . , d, and the differential ∇p : Ωp

X(E) −→Ωp+1
X (E) is given

by ∇p(ω ⊗ e) = (dω)⊗ e+ (−1)pω ∧∇(e).

(2.1.1) Lemma. For each left DX-module E, the morphisms

αpE : Ωp
X ⊗OX

E −→Homp
DX

(Sp·X ,E) = HomDX
(Sp−pX ,E), p = 0, . . . , d

defined by αpE(θ ⊗ e)(P ⊗ δ) = (−1)
p(p+1)

2 P · 〈δ, θ〉 · e, commute with the differentials and
gives rise to a natural isomorphism of complexes

α·E : Ω·X(E) −→Hom ·DX
(Sp·X ,E).

The proof of the lemma is straightforward. It should be noticed that the sign (−1)
p(p+1)

2

is imposed by the definition of the functor Hom ·DX
(−,−) (cf. (A.1)).

We will denote

α·0 := α·DX
: Ω·X(DX)

'−→ Hom ·DX
(Sp·X ,DX) = D(Sp·X) = D(OX),

α·1 := α·OX
: Ω·X = Ω·X(OX)

'−→ Hom ·DX
(Sp·X ,OX) = Sol(Sp·X) = Sol(OX).

Obviously α·0 is right DX-linear.

(2.1.2) Denote by ωX the sheaf of top differential forms Ωd
X on X. It carries a canonical

right DX-module structure (cf. [G-M], prop. 15, [M-N2], 1.1.5). Call σ· : Ω·X(DX) −→
ωX [−d] the rightDX-linear morphism given by σd(θ⊗P ) = θ·P . It is a quasi-isomorphism
(cf. [Me5], ch. I, 2.6.6) admitting a CX-linear section τ · given by τ d(θ) = θ⊗ 1. Consider
the following morphisms:

α· := α·0 ◦τ
· : ωX [−d] −→Hom ·DX

(Sp·X ,DX) = D(Sp·X),

α : ωX [−d]
α·0 ◦ (σ·)−1

−−−−−−→ Hom ·DX
(Sp·X ,DX) = D(Sp·X)

can−−→
'

D(Sp·X) = D(OX).

The first one is a CX-linear quasi-isomorphism, and the second one is an isomorphism in
the derived category of right DX-modules. Both morphisms coincide in Db(CX).
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In particular, the cohomology of the complex DR(DX) vanishes in degree different
from d and then DR(DX) = ExtdDX

(OX ,DX)[−d].

According to the Poincaré lemma, the inclusion CX ⊂ Ω0
X gives rise to a quasi-

isomorphism κ·0 : CX −→ Ω·X = Ω·X(OX). Using the isomorphism of complexes α·1 we
obtain an isomorphism in the derived category

κ : CX
'−→ Hom ·DX

(Sp·X ,OX) = Sol(OX) = DR(OX). (2)

2.2 The Duality Morphism

(2.2.1) Definition. For every bounded complex of left DX-modules M· with coherent
cohomology we define the duality morphism

ξM· : DR(M·) −→Sol(M·)∨ = R Hom ·CX
(Sol(M·),CX)

by composing the natural morphism (cf. (A.2))

ξ : R Hom ·DX
(OX ,M

·) −→R Hom ·CX
(Sol(M·), Sol(OX))

with the isomorphism induced by κ (2).

(2.2.2) Proposition. For M· ∈ Db
c(DX) there exist (local) natural isomorphisms

λM· : DR(DX)
·
⊗⊗⊗DX

M· −→DR(M·),

µM· : Sol(DX)∨
·
⊗⊗⊗DX

M· −→Sol(M·)∨

such that the following diagram commutes

DR(DX)
·
⊗⊗⊗DX

M·
�DX

⊗IdM·−−−−−−→ Sol(DX)∨
·
⊗⊗⊗DX

M·

�M·

y' '
y�M·

DR(M·)
�M·−−−→ Sol(M·)∨.

Proof. Take a flat resolution P· −→M· and an injective Godement resolution OX −→J·.
We have

DR(DX)
·
⊗⊗⊗DX

M· = Hom ·DX
(Sp·X ,DX)

·
⊗DX

P·,

DR(M·) = Hom ·DX
(Sp·X ,M

·) = Hom ·DX
(Sp·X ,P

·),

Sol(DX)∨
·
⊗⊗⊗DX

M· = O∨X
·
⊗⊗⊗DX

M· = Hom ·CX
(J·,Hom ·DX

(Sp·X , J
·))

·
⊗DX

P·,

Sol(M·)∨ = · · · = Hom ·CX
(Hom ·DX

(P·, J·),Hom ·DX
(Sp·X , J

·))
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and we are reduced to lemma (A.10).

The fact that λM· and µM· are isomorphisms is a local question. So, we can suppose
that M· has a finite free resolution and we are reduced to the obvious fact that λDX

and
µDX

are isomorphisms. Q.E.D.

(2.2.3) Corollary. For every bounded complex of left DX-modules M· with coherent
cohomology, the duality morphism ξM· is an isomorphism if and only if ξDX

⊗ IdM· is an
isomorphism.

§3 Proof of the Local Duality Theorem

Throughout this section X denotes a complex analytic manifold countable at infinity of
dimension d.

3.1 Statement of the Local Duality Theorem

(3.1.1) Theorem. For every bounded complex of left DX-modules M· with holonomic
cohomology, the duality morphism

ξM· : DR(M·) −→Sol(M·)∨

is an isomorphism (in the derived category).

3.2 The Basic Commutative Diagram

(3.2.1) Proposition. ([Me3], [Me4], [Me5]) The complex Sol(DX)∨ = O∨X is concen-
trated in degree d = dimX.

Proof. For every integer i ≥ 0, the sheaf Ext iCX
(OX ,CX) is the sheaf associated to the

presheaf U 7→ ExtiCU
(OU ,CU). It is enough to prove that ExtiCU

(OU ,CU) = 0 for all i 6= d
and for every Stein open set U ⊂ X.

Now, by the Poincaré-Verdier duality (cf. [DP], exp. 5, [Iv], VI) the space ExtiCU
(OU ,CU)

is isomorphic to the algebraic dual of H2d−i
c (U,OU), and by the Serre duality [Se], if U is

Stein, the space H2d−i
c (U,OU) is isomorphic to the topological dual of Hi−d(U, ωU), but for

such open sets Hi−d(U, ωU) = 0 and then ExtiCU
(OU ,CU) = 0, for all i 6= d. Q.E.D.
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(3.2.2) Call

ξ := hd(ξDX
) : ExtdDX

(OX ,DX) −→ExtdCX
(OX ,CX),

α := hd(α) : ωX −→ExtdDX
(OX ,DX)

where α is the isomorphism in (2.1.2). Both morphisms are right DX-linear.

As O∨X is concentrated in degree d, for every open set U ⊂ X we have

Γ(U,ExtdCX
(OX ,CX)) = R

d Γ(U,ExtdCX
(OX ,CX)[−d]) =

= R
d Γ(U,R Hom ·CX

(OX ,CX)) = hdRHom·CU
(OU ,CU),

and using the natural isomorphism νd (cf. (A.5)) we obtain an isomorphism

εU : Γ(U,ExtdCX
(OX ,CX))

'−→ HomD(CU )(OU ,CU [d]).

The εU commute with restrictions and each εU is right DX(U)-linear, where the right
DX(U)-module structure on HomD(CU )(OU ,CU [d]) comes from the left action of DX(U)
on OU .

The Poincaré quasi-isomorphism κ·0 : CX −→Ω·X and the inclusion map κ·1 : ωX [−d] −→
Ω·X gives rise to a Poincaré-De Rham morphism in the derived category

κ′ := (κ·0[d])−1 ◦κ·1[d] : ωX −→CX [d].

We will denote by βU : Γ(U, ωU) −→HomD(CU )(OU ,CU [d]) the composition of (κ′)∗ with
the map

Γ(U, ωX) = HomOU
(OU , ωU)

forget−−−→ HomCU
(OU , ωU) = HomD(CU )(OU , ωU).

In corollary (3.2.5) we will see that βU is right DX(U)-linear.

Recall that (cf. (2.1.2))

α· = α·0 ◦τ
· : ωX [−d] −→Hom ·DX

(Sp·X ,DX) = D(Sp·X),

and denote

β· := (κ·1)∗ ◦ (forget) : ωX [−d] −→Hom ·CX
(OX ,Ω

·
X),

where “(forget)” is the morphism

ωX [−d] = Hom ·OX
(OX , ωX [−d])

forget−−−→ Hom ·CX
(OX , ωX [−d]),
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and

γ· := (α·1)∗ : Hom ·CX
(OX ,Ω

·
X)

'−→ Hom ·CX
(OX , Sol(Sp·X)).

(3.2.3) Proposition. The following diagram of complexes of sheaves of vector spaces

D(Sp·X)
ξ·−−−→ Hom ·CX

(OX , Sol(Sp·X))

α·

x γ·
x'

ωX [−d]
β·−−−→ Hom ·CX

(OX ,Ω
·
X)

(3)

is commutative.

Proof. As αi = βi = 0 for all i 6= d, we need only to prove that ξd ◦αd = γd ◦βd, but
Sol(DX) = OX is a complex vanishing in degrees different from 0 and then there is no
signs in the expression for ξd (cf. (A.2)). We deduce that the degree d part of the diagram
(3) can be identified with the diagramm

HomDX
(Sp−dX ,DX)

nat.−−−→ HomCX
(OX ,HomDX

(Sp−dX ,OX))

αd

x (αd
1)∗

x'
ωX

forget−−−→ HomCX
(OX , ωX).

(4)

For a top differential form θ on an open set U ⊂ X, the section

ϕ = αd(θ) ∈ Γ(U,HomDX
(Sp−dX ,DX)) = HomDU

(Sp−dU ,DU)

is given by

ϕ(P ⊗ δ) = αd0(θ ⊗ 1)(P ⊗ δ) = (−1)
d(d+1)

2 P · 〈δ, θ〉.

Call ψ ∈ Γ(U,HomCX
(OX ,HomDX

(Sp−dX ,OX))) = HomCU
(OU ,HomDU

(Sp−dU ,OU)) the
morphism determined by ϕ. For each local section f of OU we have

ψ(f)(P ⊗ δ) = ϕ(P ⊗ δ)(f) = (−1)
d(d+1)

2 (P · 〈δ, θ〉)(f) = (−1)
d(d+1)

2 P (〈δ, θ〉f).

On the other hand, the section

ϕ′ = forget(θ) ∈ Γ(U,HomCX
(OX , ωX)) = HomCU

(OU , ωU)

is given by ϕ′(f) = fθ. Call ψ′ = (αd1)∗(ϕ
′) = αd1 ◦ϕ

′ ∈ HomCU
(OU ,HomDU

(Sp−dU ,OU)).
We have

ψ′(f)(P ⊗ δ) = αd1(ϕ′(f))(P ⊗ δ) = αd1(fθ)(P ⊗ δ) = (−1)
d(d+1)

2 P (〈δ, fθ〉)

14



and we conclude that the diagram (4) is commutative, and then (3) too. Q.E.D.

(3.2.4) Proposition. For every open set U ⊂ X, the following diagram of vector spaces

Γ(U,ExtdDX
(OX ,DX))

Γ(U,ξ)−−−→ Γ(U,ExtdCX
(OX ,CX))

Γ(U,α)

x' εU

y'
Γ(U, ωX)

βU−−−→ HomD(CU )(OU ,CU [d])

is commutative.

Proof. Let us call aU : hdΓ(U, ωX [−d])
=−→ Γ(U, ωX) the identity map,

bU = the composition of

hdΓ(U,D(Sp·X))
can−−→ R

d Γ(U,D(Sp·X))
(can)−−−→ R

d Γ(U,D(Sp·X)) = R
d Γ(U,D(OX)) =

= R
d Γ(U,ExtdDX

(OX ,DX)[−d]) = Γ(U,ExtdDX
(OX ,DX)),

cU = the composition of

hdΓ(U,Hom ·CX
(OX , Sol(Sp·X)))

can−−→ R
d Γ(U,Hom ·CX

(OX , Sol(Sp·X)))
(can)−−−→

(can)−−−→ R
d Γ(U,R Hom ·CX

(OX , Sol(Sp·X))) = R
d Γ(U,R Hom ·CX

(OX , Sol(OX)))
(�−1)∗−−−−→
'

(�−1)∗−−−−→
'

R
d Γ(U,O∨X) = R

d Γ(U,ExtdCX
(OX ,CX)[−d]) = Γ(U,ExtdCX

(OX ,CX)),

and dU = the composition of

hdΓ(U,Hom ·CX
(OX ,Ω

·
X))

can−−→ R
d Γ(U,Hom ·CX

(OX ,Ω
·
X))

(can)−−−→ R
d Γ(U,R Hom ·CX

(OX ,Ω
·
X)) =

= hdRHom·CU
(OU ,Ω

·
U)

�d

−→
'

HomD(CU )(OU ,Ω
·
U [d])

(κ·0)−1
∗−−−→
'

HomD(CU )(OU ,CU [d]).

We are going to prove that the following relations:

Γ(U,α) ◦aU = bU ◦h
dΓ(U,α·), Γ(U, ξ) ◦bU = cU ◦h

dΓ(U, ξ·),

εU ◦cU ◦h
dΓ(U, (γ·)) = dU , βU ◦aU = dU ◦h

dΓ(U, β·)

hold, and then we can conclude by using proposition (3.2.3).

The first relation Γ(U,α) ◦aU = bU ◦h
dΓ(U,α·) is an straightforward consequence of

the facts that α· and α induce the same isomorphism in Db(CX) (cf. (2.1.2)), and
that the isomorphisms α and α[−d] coincide after the canonical identification D(OX) =
ExtdDX

(OX ,DX)[−d].

15



The second relation Γ(U, ξ) ◦bU = cU ◦h
dΓ(U, ξ·) comes from the standard properties

of the total derived (bi)functors R Hom ·(−,−) and of the natural morphism

ξ : R Hom ·DX
(−, ?) −→R Hom ·CX

(Sol(?), Sol(−))

(cf. (A.4)), and from the fact that the morphisms ξDX
and ξ[−d] coincide after the

canonical identifications D(OX) = ExtdDX
(OX ,DX)[−d], O∨X = ExtdCX

(OX ,CX)[−d].

The third relation εU ◦cU ◦h
dΓ(U, (γ·)) = dU follows from the commutativity of the

following diagram

R
d Γ(U,R Hom ·CX

(OX ,CX)
(κ·0)∗−−−→ R

d Γ(U,R Hom ·CX
(OX ,Ω

·
X))

=

y =

y
hdRHom·CU

(OU ,CU)
(κ·0)∗−−−→ hdRHom·CU

(OU ,Ω
·
U)

�d

y �d

y
HomD(CU )(OU ,CU [d])

(κ·0[d])∗−−−−→ HomD(CU )(OU ,Ω
·
U [d])

and from standard naturality properties.

The last relation βU ◦aU = dU ◦h
dΓ(U, β·) is a consequence of the commutativity of

the following diagramms (see (A.7))

hd Hom·CU
(OU ,Ω

·
U)

can−−−→ hdRHom·CU
(OU ,Ω

·
U)

νd
2

y �d

y
HomK (CU )(OU ,Ω

·
U [d])

can−−−→ HomD(CU )(OU ,Ω
·
U [d])

and

hdΓ(U, ωX [−d])
hdΓ(U,β·)−−−−−→ hdΓ(U,Hom ·CX

(OX ,Ω
·
X))

=

y =

y
Γ(U, ωX)

β′−−−→ hd Hom·CU
(OU ,Ω

·
U)

forget

y νd
2

y
HomK (CU )(OU , ωU)

(κ·1[d])∗−−−−→ HomK (CU )(OU ,Ω
·
U [d])

where β′(θ) is the cohomology class of Γ(U, βd)(θ) for every top differential form θ on U .
Q.E.D.

(3.2.5) Corollary. For every open set U ⊂ X, the morphism

βU : Γ(U, ωX) −→HomD(CU )(OU ,CU [d])

16



is right DX(U)-linear.

3.3 Compatibility of the Duality Morphism with the Serre and
the Poincaré-Verdier Dualities: Mebkhout’s Proof

(3.3.1) For each open set U ⊂ X we consider the analytic trace morphism TrU :
Hd
c(U, ωU) −→C and the topological trace morphism trU : H2d

c (U,CU) −→C given by inte-
gration of top differential forms (of type (d, d)) with compact support:

The smooth De Rham complex

0 −→CX −→E0
X −→· · · −→E2d

X −→0

gives rise to a morphism in the derived category θ1 : E2d
X [−2d] −→ CX which induces

another one

θ1 : Γc(U,E
2d
X ) = R

2d Γc(U,E
2d
X [−2d])

R2d Γc(U,θ1)−−−−−−−→ H2d
c (U,CU).

The topological trace morphism is defined by the relation: trU ◦θ1 =
∫
U

.

In a similar way, the Dolbeault resolution

0 −→ωX −→Ed,0X
∂−→· · · ∂−→E

d,d
X = E

2d
X −→0

gives rise to a morphism in the derived category θ2 : E2d
X [−d] −→ωX inducing another one

θ2 : Γc(U,E
2d
X ) = R

d Γc(U,E
2d
X [−d])

Rd Γc(U,θ2)−−−−−−→ Hd
c(U, ωU).

The analytic trace morphism is defined by the relation: TrU ◦θ2 =
∫
U

.

The Poincaré-De Rham morphism κ′ : ωX −→CX [d] induces a map

β′U : Hd
c(U, ωU) −→Hd

c(U,CU [d]) = H2d
c (U,CU).

A straightforward computation shows that κ′ ◦θ2 = (−1)dθ1[d], and then we obtain

trU ◦β
′
U = (−1)dTrU . (5)

The analytic Serre pairing [Se]

〈−,−〉S : Γ(U,ωX)× Hd
c(U,OU) −→C

is given by the composition of the analytic trace morphism TrU with the Yoneda pairing

Γ(U, ωX)× Hd
c(U,OU)

forget×Id−−−−−→ HomCU
(OU , ωU)× Hd

c(U,OU)
Yoneda−−−−→ Hd

c(U, ωU).

17



The vector space Γ(U, ωX) has a natural Fréchet-Schwartz structure and, if U is
Stein, the pairing 〈−,−〉S identifies Hd

c(U,OU) with the topological dual Γ(U, ωX)′. Then,
Hd
c(U,OU) carries a natural DFS structure and Γ(U, ωX) ' Hd

c(U,OU)′ (cf. [Se], [B-S],
ch. 1, §1 (c), 2.1).

The Poincaré-Verdier pairing (cf. [DP], exp. 5)

〈−,−〉PV : HomD(CU )(OU ,CU [d])× Hd
c(U,OU) −→C

is given by the composition of the topological trace morphism trU with the Yoneda map

HomD(CU )(OU ,CU [d])× Hd
c(U,OU)

Yoneda−−−−→ H2d
c (U,CU).

According to the Poincaré-Verdier duality, the pairing 〈−,−〉PV indentifies HomD(CU )(OU ,CU [d])
with the algebraic dual Hd

c(U,OU)∗ (cf. loc. cit.).

(3.3.2) Lemma. The Serre pairing is DX(U)-balanced.

Proof. Let c be a class in Hd
c(U,OU), θ ∈ Γ(U,ωX) and P ∈ DX(U).. For each

i, j = 0, . . . , d let Ei,jU be the sheaf of smooth differential forms of type (i, j). The Dolbeault
resolution

0 −→OU −→E0,0
U

∂−→· · · ∂−→E
0,d
U −→0

(resp. 0 −→ωU −→Ed,0U
∂−→· · · ∂−→E

d,d
U −→0)

is a complex of left (resp. right) DU -modules (cf. [?]), and the morphism

θ∧ : E0,•
U −→E

d,•
U

is a lifting of θ : OU −→ωU . Let α ∈ Γc(U,E
0,d
U ) a section representing the class c. We have

〈θ, Pc〉S = · · · =
∫
U

θ ∧ (Pα), 〈θP, c〉S = · · · =
∫
U

(θP ) ∧ α.

Both integrals coincide when P is a holomorphic function. For the general case we can
work in local coordinates z = (z1, . . . , zd), z = (z1, . . . , zd), and it is enough to consider
P = ∂zi

. Let α = fdz, θ = gdz be the local expressions. We have Pα = fzi
dz, θP =

P t(g)dz = −gzi
dz, where P t is the transposed operator. The difference 〈Pc, θ〉S−〈c, θP 〉S

is the integral of the closed form (fg)zi
dzdz, and then it vanishes. Q.E.D.

(3.3.3) Lemma. The Poincaré-Verdier pairing is DX(U)-balanced.

Proof. This is a consequence of the easy fact that the Yoneda map

HomD(CU )(OU ,CU [d])× Hd
c(U,OU)

(−,−)−−−→ H2d
c (U,CU)
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is DX(U)-balanced. To see that, take c ∈ Hd
c(U,OU), ϕ ∈ HomD(CU )(OU ,CU [d]) and

P ∈ DX(U) ⊂ HomCU
(OU ,OU). Then we have

(ϕ, Pc) = (ϕ, P∗(c)) = ϕ∗(P∗(c)) = (ϕP )∗(c) = (ϕP, c).

Q.E.D.

(3.3.4) Proposition. The following relation

〈−,−〉PV ◦ (βU × Id) = (−1)d〈−,−〉S

holds.

Proof. According to the definition of βU , the following diagram

Γ(U, ωX)× Hd
c(U,OU)

Yoneda−−−−→ Hd
c(U, ωU)

βU×Id

y β′U

y
HomD(CU )(OU ,CU [d])× Hd

c(U,OU)
Yoneda−−−−→ H2d

c (U,CU)

is commutative. The propostion then follows from (5). Q.E.D.

(3.3.5) Proposition. For each Stein open set U ⊂ X, there exist natural right DX(U)-
linear isomorphisms

Hd
c(U,OU)′

'−→ Γ(U,ExtdDX
(OX ,DX))

Hd
c(U,OU)∗

'−→ Γ(U,ExtdCX
(OX ,CX))

such that the following diagram

Γ(U,ExtdDX
(OX ,DX))

Γ(U,ξ)−−−→ Γ(U,ExtdCX
(OX ,CX))

'
x '

x
Hd
c(U,OU)′

inclusion−−−−−→ Hd
c(U,OU)∗

commutes.

Proof. It is a consequence of propositions (3.2.4), (3.3.4), of lemmas (3.3.2), (3.3.3)
and of Serre and Poincaré-Verdier dualities. Q.E.D.

(3.3.6) According to (2.1.2), corollary (2.2.3) and proposition (3.2.1), the question in
the theorem (3.1.1) is equivalent to prove that

ξ ⊗ IdM· : ExtdDX
(OX ,DX)

·
⊗⊗⊗DX

M
· −→ExtdCX

(OX ,CX)
·
⊗⊗⊗DX

M
·
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is an isomorphism.

We can suppose (cf. [M-N3], II.5) that M· is a single holonomic module M. The
problem being local, we can also suppose that there exists a finite free resolution P·

0 −→Drm
X −→· · · −→D

r0
X −→M −→0.

We have to prove that

ξ ⊗ IdP· : ExtdDX
(OX ,DX)⊗DX

P
· −→ExtdCX

(OX ,CX)⊗DX
P
·

is a quasi-isomorphism.

According to proposition (3.3.5), for each Stein open set U ⊂ X the morphism Γ(U, ξ⊗
IdP·) can be identified with[

Hd
c(U,OU)rm

]′ −→ · · · −→
[
Hd
c(U,OU)r0

]′y inc.

y inc.[
Hd
c(U,OU)rm

]∗ −→ · · · −→
[
Hd
c(U,OU)r0

]∗
.

But the complex

Hd
c(U,OU)rm

···←− H←−
d

c (U,OU)r0

is quasi-isomorphic to R Γc(U,Sol(M)) (up to some shift), and so, by Kashiwara’s con-
structibility theorem [Ka] (see also [M-N3]) and by proposition (1.1.3), it has finite dimen-
sional cohomology for all small balls U with respect to some local coordinates. According
to Serre’s lemma for DFS spaces [Se], 10.1, [B-S], ch. 1, §1 (c), we deduce that Γ(U, ξ⊗IdP·)
is a quasi-isomorphism for many open sets U , and then ξ ⊗ IdP· is a quasi-isomorphism
too.

(3.3.7) Remark. The duality morphism DR(M·) −→Sol(M·)∨ considered by Mebkhout
in [Me3], III.1.1 comes from the isomorphisms λM· and µM· of proposition (2.2.2) and from
the morphism ExtdDX

(OX ,DX) ' ωX −→ExtdCX
(OX ,CX) induced by Serre and Poincaré-

Verdier dualities. According to proposition (3.3.5), Mebkhout’s duality morphism coin-
cides with the formal one.

3.4 Compatibility of the Duality Morphism with the Local An-
alytic Duality: Kashiwara-Kawai’s proof

Let M· be a bounded complex of left DX-modules with holonomic cohomology. In order
to proof the Local Duality Theorem (3.1.1) it is enough to proof that the stalk

(ξM·)x : DR(M·)x −→Sol(M·)∨x
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is an isomorphism for every point x ∈ X.

Let i : {x} ↪→ X be the inclusion. Denote

Sol !x(M
·) := RHom·DX,x

(M·x, i
!
OX), DRx(M

·) := RHom·DX,x
(OX,x,M

·
x).

We have a natural isomorphism (cf. (A.11))

i! ◦ Sol
'−→ Sol !x, (6)

which induces, joint with (2), another one

Sol !x(OX) ' i!CX . (7)

Call
ξM·(x) : DRx(M

·) −→RHom·C(Sol !x(M
·), i!CX)

the natural morphism defined as in definition (2.2.1), now using (7) instead of (2).

Call
ζ : Sol(M·)∨x −→RHom·C(Sol !x(M

·), i!CX)

the composition of the natural morphism (cf. (A.11))

R Hom ·CX
(Sol(M·),CX)x −→RHom·C(i! Sol(M·), i!CX))

with the isomorphism induced by (6).

(3.4.1) Lemma. Let M· be a bounded complex of left DX-modules. The following diagram

DR(M·)x
(�M· )x−−−−→ (M·)∨x

nat.

y �

y
DRx(M

·)
�M· (x)−−−−→ RHom·C(Sol !x(M

·), i!CX)

is commutative.

Proof. It is a consequence of lemma (A.12). Q.E.D.

(3.4.2) Corollary. Let M· be a bounded complex of left DX-modules with holonomic
cohomology. Then, (ξM·)x is an isomorphism if and only if (ξM ·)(x) is an isomorphism.

Proof. As M· has coherent cohomology, the natural morphism

DR(M·)x −→DRx(M
·)
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is an isomorphism. Also, asM· has holonomic cohomology, by the constructibility theorem
of Kashiwara [Ka] (see also [M-N3]) and by proposition (1.2.3), the morphism ζ is an
isomorphism. We conclude by applying the preceeding lemma. Q.E.D.

We can repeat the arguments in proposition (2.2.2) and corollary (2.2.3) to obtain the
following.

(3.4.3) Proposition. For every bounded complex of left DX-modules M· with coher-
ent cohomology objects, the duality morphism ξM·(x) is an isomorphism if and only if
ξDX

(x)⊗ IdM·x is an isomorphism.

Now, we are going to give the punctual analogous of results in section 3.2.

First, the complexes DRx(DX) and i!OX are concentrated in degree d and we have an
isomorphism of right DX,x-modules

α(x) := hd(nat.) ◦αx : ωX,x
'−→ hdRHom·DX,x

(OX,x,DX,x) = ExtdDX,x
(OX,x,DX,x).

The complex i!CX is concentrated in degree 2d (cf. (1.2.2)). We then obtain that the
complex RHom·C(Sol !x(DX), i!CX) = RHom·C(i!OX , i

!CX) is also concentrated in degree
d, and we have a canonical identification

HomD(C)(i
!
OX , i

!
CX [d]) = HomC(Hd

x(OX),H2d
x (CX)).

Call
ξ(x) := hd(ξDX

(x)) : ExtdDX,x
(OX,x,DX,x) −→ExtdC(i!OX , i

!
CX),

which is right DX,x-linear.

As in 3.2, we find an isomorphism

ε(x) : ExtdC(i!OX , i
!
CX)

'−→ HomD(C)(i
!
OX , i

!
CX [d]) = HomC(Hd

x(OX),H2d
x (CX))

and a map

β(x) : ωX,x −→HomD(C)(i
!
OX , i

!
CX [d]) = HomC(Hd

x(OX),H2d
x (CX)),

which are compatibles in the obvious way with the εU and the βU defined in (3.2.2), for
x ∈ U .

The following proposition is then a direct consequence of proposition (3.2.4).

(3.4.4) Proposition. For every point x ∈ X, the following diagramm

ExtdDX,x
(OX,x,DX,x)

ξ(x)−−−→ ExtdC(i!OX , i
!CX)

α(x)

x' ε(x)

y'
ωX,x

β(x)−−−→ HomC(Hd
x(OX),H2d

x (CX))
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is commutative.

As in (3.3.1), call

a) Trx : Hd
x(ωX) −→C the local analytic trace morphism, which is induced by the global

analytic trace morphism TrX ,

b) β′(x) : Hd
x(ωX) −→H2d

x (CX) the morphism induced by the Poincaré-De Rham mor-
phism ωX −→CX [d],

c) 〈−,−〉anx : ωX,x × Hd
x(OX) −→C the local duality pairing obtained by composing the

local analytic trace morphism Trx with the Yoneda pairing,

d) 〈−,−〉topx : HomC(Hd
x(OX),H2d

x (CX))×Hd
x(OX) −→C the composition of the punctual

topological trace trx (see (1.2.2)) with the evaluation map.

As in (3.3.1), we have the following assertions:

1. The pairings 〈−,−〉anx and 〈−,−〉topx are DX,x-balanced.

2. 〈−,−〉topx ◦ (β(x)× Id) = (−1)d〈−,−〉anx .

Using the Local Analytic Duality Theorem (cf. ??), we obtain the following.

(3.4.5) Proposition. There exist natural right DX,x-linear isomorphisms

Hd
x(OX)′

'−→ ExtdDX,x
(OX,x,DX,x)

Hd
x(OX)∗

'−→ ExtdC(i!OX , i
!CX)

such that the following diagram

ExtdDX,x
(OX,x,DX,x)

ξ(x)−−−→ ExtdC(i!OX , i
!CX)

'
x '

x
Hd
x(OX)′

inclusion−−−−−→ Hd
x(OX)∗

commutes.

The following punctual duality of Kashiwara [Ka], §5 can be deduced from propositions
(3.4.3) and (3.4.5) in a similar way we did in (3.3.6).

(3.4.6) Proposition. Let M· be a bounded complex of left DX-modules with holonomic
cohomology. Then, the punctual duality morphism

ξM·(x) : DRx(M
·) −→RHom·C(Sol !x(M

·), i!CX)
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is an isomorphism for each point x ∈ X.

(3.4.7) Corollary. Let M· be a bounded complex of DX-modules with holonomic
cohomology. Then

ExtiDX,x
(OX,x,M

·
x) ' Extd−iDX,x

(M·x,H
d
x(OX))∗

for each i ∈ Z and for each x ∈ X.

Finally, according to corollary (3.4.2), we deduce that the morphism

(ξM·)x : DR(M·)x −→Sol(M·)∨x

is an isomorphism for each x ∈ X, and the proof of theorem (3.1.1) is finished.

(3.4.8) Remark. Actually, proposition (3.4.6) and corollary (3.4.7) do not match
exactly the statement in [Ka], §5. The relation between both results becomes clear by
considering the dual complex (M·)∗ (cf. (3.5.3)). Anyway, the point is to prove that
the punctual duality morphism ξM·(x) induced by the (formal) duality morphism ξM·
coincides with the isomorphism in loc. cit..

3.5 Some Complements

(3.5.1) In a similar way we defined the duality morphism in (2.2.1), we find for every
bounded complex of left DX-modules M· with coherent cohomology a natural morphism

ηM· : Sol(M·) −→DR(M·)∨

by composing the natural morphism (cf. (A.2))

η : R Hom ·DX
(M·,OX) −→R Hom ·CX

(DR(M·),DR(OX))

with the isomorphism induced by κ (2).

Call η∨M· := R Hom ·X(ηM· ,CX) and βDR(M·) the biduality morphism corresponding to
DR(M·) (cf. (1.1.2)). According to (A.3) we have ξDR(M·) = η∨M· ◦βDR(M·), and we obtain
the following corollary of the LDT.

(3.5.2) Corollary. For every bounded complex of left DX-modules M· with holonomic
cohomology, the natural morphism

ηM· : Sol(M·) −→DR(M·)∨

is an isomorphism (in the derived category).
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(3.5.3) For every complex of left DX-modules M·, its (internal) dual is defined by
(M·)∗ := HomOX

(ωX ,D(M·))[d], which is again a complex of left DX-modules (cf. [Ca],
1.1). The internal duality induces a self-(anti)equivalence of the derived category Db

c(DX).

The isomorphism α of (2.1.2) induces natural isomorphisms O∗X ' OX and

Sol((M·)∗)
'−→ DR(M·)

for every bounded complex of left DX-modules M· with coherent cohomology.

(3.5.4) Corollary. For every bounded complex of left DX-modules M· with holonomic
cohomology, there exist natural isomorphisms

Sol((M·)∗)
'−→ Sol(M·)∨, DR((M·)∗)

'−→ DR(M·)∨.

(3.5.5) Definition. A bounded constructible complex K· ∈ Db
c(CX) satisfies the support

conditions if it is concentrated in degrees [0, d] and if dim supphiK· ≤ d − i for each
i = 0, . . . , d. If both K· and its dual (K·)∨ satisfy the support conditions we say that K· is
a perverse sheaf.

The full subcategory of Db
c(CX) whose objects are the perverse sheaves is known to

be abelian (cf. [B-B-D]).

If M is a holonomic DX-module, according to [Ka] we know that Sol(M) and DR(M)
satisfy the support conditions (cf. also [M-N1], prop. 3). The LDT gives us the following
result.

(3.5.6) Proposition. If M is a holonomic DX-module, the complexes Sol(M) and
DR(M) are perverse sheaves.
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Appendix

In this Appendix we have collected some results on the extension of some functors, natural
transformations and commutative diagrams to the category of complexes. A complete
reference for these constructions is [De2], 1.1 (see also Erratum in [SGA 41

2
], p. 312). We

have extracted from there (some of) the results we need and, for the ease of the reader,
we have stated them in a very concrete way.

(A.1) Let RX be a sheaf of rings on a topological space X, let R0
X be a sheaf of rings

contained in its center and let R0 the global sections of R0
X .

The functors

Hom·RX
(−,−) : C(RX)× C(RX) −→C(R0),

Hom ·RX
(−,−) : C(RX)× C(RX) −→C(R0

X)

−
·
⊗RX

− : C( rRX)× C(RX) −→C(R0
X)

are defined with the usual conventions.

Given two complexes of left RX-modules F·, I·, the complex A· = Hom·RX
(F·, I·) is

defined by An =
∏

q−p=n HomRX
(Fp, Iq) and the differential dA(h) = dI ◦h−(−1)deg hh ◦dF.

The complex Hom ·RX
(F·, I·) is defined in a similar way.

Given a complex of right (resp. left) RX-modules N· (resp. M·), the complex B· =

N·
·
⊗RX

M· is defined by Bn =
⊕

j+k=nN
j ⊗RX

Mk and the differential dB(y ⊗ x) =

(dNy) ⊗ x + (−1)deg yy ⊗ (dMx). The action of these functors on morphisms are defined
in the direct way (no signs are involved).
The complex G· = F·[1] is defined by Gn = Fn+1 and dG· = −dF· .

We have derived functors

RHom·RX
(−,−) : D∗(RX)×D+(RX) −→D?(R0)

R Hom ·RX
(−,−) : D∗(RX)×D+(RX) −→D?(R0

X)

for ∗ = ? = ∅ or ∗ = −, ? = +, and

−
·
⊗⊗⊗RX

− : D−( rRX)×D−(RX) −→D−(R0
X)

(cf. [Ha], II, §3, §4; see also [Sp] in order to avoid boundedness conditions on complexes).

(A.2) Given three complexes F·, I·, J· of left RX-modules, we define a natural morphism
in C(R0

X)

ξ· : Hom ·RX
(F·, I·) −→Hom ·R0

X
(Hom ·RX

(I·, J·),Hom ·RX
(F·, J·))
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in the following way
ξ·(h)(a) = (−1)(deg h)(deg a)a ◦h.

In a similar way we define a natural morphism

η· : Hom ·RX
(F·, I·) −→Hom ·R0

X
(Hom ·RX

(J·,F·),Hom ·RX
(J·, I·))

by putting η·(h)(b) = h ◦b.

If F· = RX , we have an obvious identification (no signs are involved) between the
identity functor of C(RX) and Hom ·RX

(RX ,−), and then we obtain a natural “biduality
morphism”

β· : I· −→Hom ·R0
X

(Hom ·RX
(I·, J·), J·)

given by β·(h)(a) = (−1)(deg h)(deg a)a(h).

Given three complexes F·, I·, J· of left RX-modules, call K· = Hom ·RX
(F·,F·), L· =

Hom ·RX
(F·, I·), M· = Hom ·RX

(I·,F·), G· = Hom ·R0
X

(L·,K·) and η· : M· −→ G·, (η·)∗ =

Hom ·R0
X

(η·,K·),

β· : L· −→Hom ·R0
X

(Hom ·RX
(L·,K·),K·) = Hom ·R0

X
(G·,K·)

the natural morphisms defined above.

(A.3) Lemma. With the above notations, the equation (η·)∗ ◦β· = ξ· holds.

(A.4) Assume that R0
X is the constant sheaf associated to a field K. Then, the natural

morphism ξ· induces another one

ξ : R Hom ·RX
(F·,G·) −→R Hom ·R0

X
(R Hom ·RX

(G·,H·),R Hom ·RX
(F·,H·))

for F· ∈ D−(RX) and G·,H· ∈ D+(RX). For that2, take a bounded below injective resolu-
tion G· −→I· and a bounded below injective Godement resolution H· −→J·, i.e. Jp = ∆∗J

p
0

where ∆ is the identity map from the space X, endowed with the discrete topology, to X,
and the Jp0 are injective sheaves of ∆−1RX-modules. We then have R Hom ·RX

(F·,G·) =
Hom ·RX

(F·, I·), R Hom ·RX
(G·,H·) = Hom ·RX

(G·, J·) and R Hom ·RX
(F·,H·) = Hom ·RX

(F·, J·).
The last complex is a complex of injective sheaves of K-vector spaces because

Homn
RX

(F·, J·) =
∏
p∈Z

HomRX
(Fp, Jp+n) =

=
∏
p∈Z

HomRX
(Fp,∆∗J

p+n
0 ) = ∆∗

(∏
p∈Z

Hom∆−1RX
(∆−1

F
p, Jp+n0 )

)
,

2I owe this argument to Z. Mebkhout.
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and so

R Hom ·R0
X

(R Hom ·RX
(G·,H·),R Hom ·RX

(F·,H·)) =

= Hom ·R0
X

(Hom ·RX
(G·, J·),Hom ·RX

(F·, J·)) = Hom ·R0
X

(Hom ·RX
(I·, J·),Hom ·RX

(F·, J·)).

The morphism ξ then comes from the natural morphism

ξ· : Hom ·RX
(F·, I·) −→Hom ·R0

X
(Hom ·RX

(I·, J·),Hom ·RX
(F·, J·)).

In a similar way the natural morphisms β· and η· induce other ones

β : G· −→R Hom ·R0
X

(R Hom ·RX
(G·,H·),H·)

for G·,H· ∈ D+(RX) and

η : R Hom ·RX
(F·,G·) −→R Hom ·R0

X
(R Hom ·RX

(H·,F·),R Hom ·RX
(H·,G·))

for F·,G· ∈ D+(RX) and H· ∈ D−(RX).

The natural morphisms ξ·, β·, η·, ξ,β,η are “cocontractions” in the (co)sense of [De2],
1.1.9.

(A.5) For each m ∈ Z, we have natural isomorphisms

Hom ·RX
(I·[−m], J·)

η·1,m−−→
'

Hom ·RX
(I·, J·)[m]

η·2,m←−−−
'

Hom ·RX
(I·, J·[m])

given by η·1,m(a) = (−1)m deg aa, η·2,m(b) = b.

Let F·, I·, J· be three complexes of left RX-modules and let m be an integer. Call A· =
Hom ·RX

(I·, J·),B· = Hom ·RX
(F·, J·),A·m = Hom ·RX

(I·, J·[m]),B·m = Hom ·RX
(F·, J·[m]) and

Λ·m : Hom ·R0
X

(A·m,B
·
m)

'−→ Hom ·R0
X

(A·,B·)

the isomorphism obtained by composing

Hom ·R0
X

(A·m,B
·
m)

(η·2,m)∗

−−−−→ Hom ·R0
X

(A·[m],B·m)
(η·2,m)∗
−−−−→ Hom ·R0

X
(A·[m],B·[m])

η·1,−m−−−→

Hom ·R0
X

(A·,B·[m])[−m]
η·1,m−−→ Hom ·R0

X
(A·,B·)[m][−m] = Hom ·R0

X
(A·,B·).

Call

ξ· : Hom ·RX
(F·, I·) −→Hom ·R0

X
(Hom ·RX

(I·, J·),Hom ·RX
(F·, J·))

′ξ
·
: Hom ·RX

(F·, I·) −→Hom ·R0
X

(Hom ·RX
(I·, J·[m]),Hom ·RX

(F·, J·[m]))
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the natural morphisms.

(A.6) Lemma. With the above notations, the equality Λn
m ◦

′ξ
n

= (−1)mnξn holds for
every n ∈ Z.

(A.7) For each d ∈ Z, we have obvious natural isomorphisms (there is no signs involved)

HomK (RX)(I
·[−d], J·)

νd
1←−
'

hd Hom·RX
(I·, J·)

νd
2−→
'

HomK (RX)(I
·, J·[d]).

Call νd : hdRHom·RX
(I·, J·)

'−→ HomD(RX)(I
·, J·[d]) the induced “derived” isomorphism.

(A.8) Lemma. Given three complexes F·, I·, J· of left RX-modules and an integer d ∈ Z,
the following diagrams

hd Hom·RX
(F·, I·)

hdξ·−−−→ hd Hom·R0
X

(Hom ·RX
(I·, J·),Hom ·RX

(F·, J·))

νd
2

y (−1)d(η·1,−d)∗ ◦ νd
1

y
HomK (RX)(F

·, I·[d])
Hom·RX

(−,J·)
−−−−−−−−→ HomK (R0

X)(Hom ·RX
(I·[d], J·),Hom ·RX

(F·, J·)),

hd Hom·RX
(F·, I·)

hdξ·−−−→ hd Hom·R0
X

(Hom ·RX
(I·, J·),Hom ·RX

(F·, J·))

νd
1

y ((η·1,d)−1)∗ ◦ νd
2

y
HomK (RX)(F

·[−d], I·)
Hom·RX

(−,J·)
−−−−−−−−→ HomK (R0

X)(Hom ·RX
(I·, J·),Hom ·RX

(F·[−d], J·))

are commutatives.

(A.9) Given four complexes P·,M·, J·,D· of left RX-modules, a complex F· of R0
X-

modules and a complex Q· of (RX ,RX)-bimodules, we define natural morphisms

λ·1 : Hom ·RX
(P·,Q·)

·
⊗RX

M
· −→Hom ·RX

(P·,Q·
·
⊗RX

M
·)

λ·2 : Hom ·RX
(Q·

·
⊗RX

M
·, J·) −→Hom ·RX

(M·,Hom ·RX
(Q·, J·))

µ·0 : Hom ·R0
X

(D·,F·)
·
⊗RX

M
· −→Hom ·R0

X
(Hom ·RX

(M·,D·),F·)

by

λ·1(h⊗ x)(z) = (−1)(deg x)(deg z)h(z)⊗ x
λ·2(a)(v)(u) = (−1)(deg v)(deg u)a(u⊗ v)

µ·0(b⊗ w)(c) = (−1)(degw)(deg c)b(c(w)).
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(A.10) Lemma. Given three complexes P·,M·, J· of left RX-modules and a complex Q·

of (RX ,RX)-bimodules, the following diagram

Hom ·RX
(P·,Q·

·
⊗RX

M·)
ξ·−−−→ Hom ·R0

X
(Hom ·RX

(Q·
·
⊗RX

M·, J·),Hom ·RX
(P·, J·))

λ·1

x (λ·2)∗ ◦µ·0

x
Hom ·RX

(P·,Q·)
·
⊗RX

M·
ξ·⊗Id−−−→ Hom ·R0

X
(Hom ·RX

(Q·, J·),Hom ·RX
(P·, J·))

·
⊗RX

M·

is commutative. In particular, if Q· = RX , then we obtain a natural commutative diagram

Hom ·RX
(P·,M·)

ξ·−−−→ Hom ·R0
X

(Hom ·RX
(M·, J·),Hom ·RX

(P·, J·))

λ·

x µ·
x

Hom ·RX
(P·,RX)

·
⊗RX

M·
ξ·⊗Id−−−→ Hom ·R0

X
(J·,Hom ·RX

(P·, J·))
·
⊗RX

M·.

(A.11) Let i : F ↪→ X be a closed immersion and denote RF = i−1RX , R0
F = i−1R0

X .
Given left RX-modules I, J, there are well known canonical natural morphisms

f : i−1 HomRX
(I, J) −→HomRF

(i−1
I, i−1

J)

n : i−1 HomRX
(I, J) −→HomRF

(i!I, i!J)

g : i! HomRX
(I, J)

'−→ HomRF
(i−1

I, i!J).

They induce natural morphisms f ·, n·, g· at the level of complexes in the obvious way (no
signs are involved).

Given two complexes I·, J· of left R0
X-modules, consider the following natural mor-

phisms

n· : i−1 Hom ·R0
X

(I·, J·) −→Hom ·R0
F

(i!I·, i!J·),

β· : i−1 Hom ·R0
X

(I·, J·) −→Hom ·R0
F

(HomR0
F

(i−1 Hom ·R0
X

(I·, J·), i!J·), i!J·),

(i!β·)∗ : Hom ·R0
F

(i! Hom ·R0
X

(Hom ·R0
X

(I·, J·), J·), i!J·) −→Hom ·R0
F

(i!I·, i!J·)

the morphism induced by i!β· : i!I· −→i! Hom ·R0
X

(Hom ·R0
X

(I·, J·), J·) and

(g·)∗ : Hom ·R0
F

(Hom ·R0
F

(i−1 Hom ·R0
X

(I·, J·), i!J·), i!J·)
'−→ Hom ·R0

F
(i! Hom ·R0

X
(Hom ·R0

X
(I·, J·), J·), i!J·)

the isomorphism induced by

g· : i! Hom ·R0
X

(Hom ·R0
X

(I·, J·), J·)
'−→ Hom ·R0

F
(i−1 Hom ·R0

X
(I·, J·), i!J·).
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(A.12) Lemma. With the above notations, the equality n· = (i!β·)∗ ◦ (g·)∗ ◦β· holds.

Given three complexes F·, I·, J· of left RX-modules, consider the following natural
morphisms

i−1ξ· : i−1 Hom ·RX
(F·, I·) −→i−1 Hom ·R0

X
(Hom ·RX

(I·, J·),Hom ·RX
(F·, J·))

f · : i−1 Hom ·RX
(F·, I·) −→Hom ·RF

(i−1
F
·, i−1

I
·)

ξ· : Hom ·RF
(i−1

F
·, i−1

I
·) −→Hom ·R0

F
(Hom ·RF

(i−1
I
·, i!J·),Hom ·RF

(i−1
F
·, i!J·))

and

ñ· : i−1 Hom ·R0
X

(Hom ·RX
(I·, J·),Hom ·RX

(F·, J·)) −→Hom ·R0
F

(Hom ·RF
(i−1

I
·, i!J·),Hom ·RF

(i−1
F
·, i!J·))

the morphism induced by

n· : i−1 Hom ·R0
X

(Hom ·RX
(I·, J·),Hom ·RX

(F·, J·)) −→Hom ·R0
F

(i! Hom ·RX
(I·, J·), i! Hom ·RX

(F·, J·))

and the isomorphisms

i! Hom ·RX
(I·, J·)

g·−→
'

Hom ·RF
(i−1

I
·, i!J·), i! Hom ·RX

(F·, J·)
g·−→
'

Hom ·RF
(i−1

F
·, i!J·).

(A.13) Lemma. With the above notations, the equality ñ· ◦ (i−1ξ·) = ξ· ◦f · holds.

(A.14) Let p : Y −→ X be a continuous map between topological spaces and denote
RY = p−1RX , R0

Y = p−1R0
X . Given two left RY -modules A,B, the well known natural

morphism
h : p∗HomRY

(A,B) −→HomRX
(p∗A, p∗B)

induces a natural morphism h· at the level of complexes in the obvious way (no signs are
involved).

Given three complexes of left RY -modules A·,B·,C·, consider the following natural
morphisms

p∗ξ
· : p∗Hom ·RY

(A·,B·) −→p∗Hom ·R0
Y

(Hom ·RY
(B·,C·),Hom ·RY

(A·,C·))

h· : p∗Hom ·RY
(A·,B·) −→Hom ·RX

(p∗A
·, p∗B

·)

m· : p∗Hom ·R0
Y

(Hom ·RY
(B·,C·),Hom ·RY

(A·,C·)) −→Hom ·R0
X

(p∗Hom ·RY
(B·,C·),Hom ·RX

(p∗A
·, p∗C

·))

the morphism induced by using h· twice, and

q· : Hom ·RX
(p∗A

·, p∗B
·) −→Hom ·R0

X
(p∗Hom ·RY

(B·,C·),Hom ·RX
(p∗A

·, p∗C
·))

the morphism induced by ξ· and h·.

(A.15) Lemma. With the above notations, the equality q· ◦h· = m· ◦ (p∗ξ
·) holds.
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différentiels (vol. I, II), Summer school at CIMPA, Nice, 1990, Travaux en
cours, 45, 46. Hermann, Paris, 1993.

[Me1] Z. Mebkhout. Cohomologie locale d’une hypersurface. Lect. Notes in Math.,
670 (1977), 89–119.

[Me2] Z. Mebkhout. Local cohomology of analytic spaces. Publ. R.I.M.S. Kyoto
Univ., 12 (1977), 247–256.

[Me3] Z. Mebkhout. Cohomologie locale des espaces analytiques complexes. Thèse
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