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Sección Álgebra, Computación, Geometŕıa y Topoloǵıa
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Abstract

Let X be a complex analytic manifold and D ⊂ X a free divisor. If D is
locally quasi-homogeneous, then the logarithmic de Rham complex associated to
D is quasi-isomorphic to Rj∗(CX\D), which is a perverse sheaf [4]. On the other
hand, the logarithmic de Rham complex associated to a Koszul free divisor is
perverse [2]. In this paper we prove that every locally quasi-homogeneous free
divisor is Koszul free.

Résumé

Soit X une varieté analytique complexe et D un diviseur libre. Si D est lo-
calement casi-homogène, alors le complexe de de Rham logarithmique est casi-
isomorphe à Rj∗(CX\D), qui est un faisceau pervers [4]. D’un autre coté, le com-
plexe de de Rham logarithmique associé à un diviseur Koszul libre est pervers [2].
Dans cet article nous démontrons que tout diviseur libre localement casi-homogène
est Koszul libre.
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1 Introduction

Let X be a complex analytic manifold. For D ⊂ X a divisor, let us write
j : U = X \ D ↪→ X for the corresponding open inclusion and Ω•(∗D) for
the meromorphic de Rham complex with poles along D. In [6], Grothendieck
proved that the canonical morphism Ω•(∗D)→ Rj∗(CU) is an isomorphism
(in the derived category). This result is usually known as (a version of)
Grothendieck’s Comparison Theorem.

In [10], K. Saito introduced the subcomplex Ω•X(logD) of Ω•(∗D), that
he called logarithmic de Rham complex associated to D, generalising the well
known case of normal crossing divisors (cf. [5]). In the same paper, K. Saito
also introduced the important notion of free divisor.

In [4], it is proved that the logarithmic de Rham complex Ω•X(logD)
computes the cohomology of the complement U if D is a locally quasi-
homogeneous free divisor (we say that D satisfies the logarithmic comparison
theorem). In other words, the canonical morphism Ω•X(logD)→ Rj∗(CU) is
an isomorphism, or using Grothendieck’s result, the inclusion Ω•X(logD) ↪→
Ω•(∗D) is a quasi-isomorphism. In fact, in [3] it is proved that, in the case
of dimX = 2, D is locally quasi-homogeneous if and only if it satisfies the
logarithmic comparison theorem.

As the derived direct image Rj∗(CU) is a perverse sheaf (it is the de Rham
complex of the holonomic module of meromorphic functions with poles along
D [8], II, th. 2.2.4), we deduce that the logarithmic comparison theorem for
a free divisor D implies that the logarithmic de Rham complex associated to
D is a perverse sheaf.

On the other hand, the first author proved in [2] the following results:
Let D ⊂ X be a Koszul free divisor (see definition 2.3) and I the left ideal
of the ring DX of differential operators on X generated by the logarithmic
vector fields with respect to D. Then:
1) The left DX-module DX/I is holonomic.
2) There is a canonical isomorphism in the derived category

Ω•X(logD) ' RHomDX
(DX/I,OX).

As a consequence of these results, the logarithmic de Rham complex associ-
ated to a Koszul free divisor is a perverse sheaf.

In this paper we prove the following result, suggested by the previous ones:
every locally quasi-homogeneous free divisor is Koszul free (see theorem 3.2).

At the end we study some examples in dimension 2 and 3.
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2 Preliminary results

Let X be a n-dimensional complex analytic manifold. We denote by π :
T ∗X → X the cotangent bundle, OX the sheaf of holomorphic functions
on X, DX the sheaf of linear differential operators on X (with holomorphic
coefficients), GrF •(DX) the graduated ring associated to the filtration by the
order and σ(P ) the principal symbol of a differential operator P . We will
note O = OX,x, D = DX,x and GrF •(D) = GrF •(DX)x the respective stalks at
x, with x a point in X. Let D ⊂ X a hypersurface, we denote by Der(logD)
the OX-module of the logarithmic vector fields with respect to D [10].

Definition 2.1.– A divisor D is Euler-homogeneous at x if there is a local
equation h for D around x, and a germ of logarithmic vector field δ such that
δ(h) = h.

The set of points where a divisor is Euler-homogeneous is open.

Definition 2.2.– (cf. [4]) A divisor D in a n-dimensional complex mani-
fold X is locally quasi-homogeneous if at each point q ∈ D, there are local
coordinates (U ;x1, . . . , xn) centered at q (i.e. with xi(q) = 0 for i = 1, . . . , n)
with respect to which D ∩ U has a weighted homogeneous defining equation
(with strictly positive weights).

Obviously a locally quasi-homogeneous divisor is Euler-homogeneous at
every point.

Definition 2.3.– ([2], def. 4.1.1) Let D ⊂ X be a divisor. We say that D is
a Koszul free divisor at x if it is free at x and there exists a basis {δ1, . . . , δn}
of Der(logD)x such that the sequence of symbols {σ(δ1), . . . , σ(δn)} is regular
in GrF •(D) = GrF •(DX)x . If D is a Koszul free divisor at each point of D,
we simply say that it is a Koszul free divisor.

Remark 2.4.– The ideal ID,x = GrF •(D)Der(logD)x is generated by the
elements of any basis of Der(logD)x. As D is Koszul free at x if and only if
depth(ID,x,GrF •(D)) = n (cf. [7], cor. 16.8), it is clear that the definition of
Koszul free divisor does not depend on the election of a particular basis. By
the coherence of GrF •(DX), if a divisor is Koszul free at a point, then it is
Koszul free near that point.

We have not found a reference for the following well known proposition
(see [7], th. 17.4 for the local case).
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Proposition 2.5.– Let C{x} be the ring of convergent power series in the
variables x = x1, . . . , xn and let G be the graded ring of polynomials in
the variables ξ1, . . . , ξt with coefficients in C{x}. A sequence σ1, . . . , σs of
homogeneous polynomials in G is regular if and only if the set of zeros V (I)
of the ideal I generated by σ1, . . . , σs has dimension n + t − s in U × Ct,
for some open neighborhood U of 0 (then each irreducible component has
dimension n+ t− s).

Proof: Let C{x, ξ} be the ring of convergent power series in the variables
x1, . . . , xn, ξ1, . . . , ξt. As the σi are homogeneous and the ring C{x, ξ} is a
flat extension of G, the σi are a regular sequence in G if and only if they
are a regular sequence in C{x, ξ}. But the last condition is equivalent to the
equality (loc. cit.):

dim(0,0)(V (I)) = dim (C{x, ξ}/I) = n+ t− s.

Finally, using the fact that all the σi are homogeneous in the variables ξ, the
local dimension of V (I) at (0, 0) coincides with its dimension in U × Ct for
some neighborhood U of 0. C.Q.D.

Corollary 2.6.– Let D ⊂ X be a free divisor. Let J be the ideal in OT ∗X

generated by π−1Der(logD). Then, D is Koszul free if and only if the set
V (J) of zeros of J has dimension n (in this case, each irreducible component
of V (J) has dimension n).

Proposition 2.7.– Let X be a complex manifold of dimension n and let
D ⊂ X be a divisor. Then:

1. Let X ′ = X × C and D′ = D × C. The divisor D ⊂ X is Koszul free
if and only if D′ ⊂ X ′ is Koszul free.

2. Let Y be another complex manifold of dimension r and let E ⊂ Y be
a divisor. Then: a) The divisor (D × Y ) ∪ (X × E) is free if D ⊂ X
and E ⊂ Y are free.
b) The divisor (D× Y )∪ (X ×E) is Koszul free if D ⊂ X and E ⊂ Y
are Koszul free.

Proof:

1. It is a consequence of [4], lemma 2.2, (iv) and the fact that σ1, . . . , σn

is a regular sequence in OX,p[ξ1, . . . , ξn] if and only if ξn+1, σ1, . . . , σn is
a regular sequence in OX′,(p,t)[ξ1, . . . , ξn, ξn+1].
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2. a) It is an immediate consequence of Saito’s Criterion (cf. [4], lemma
2.2, (v)).
b) It is a consequence of a) and Corollary 2.6.

C.Q.D.

Example 2.8.– Examples of Koszul free divisors are:
1) Nonsingular divisors.
2) Normal crossing divisors.
3) Plane curves: If dimCX = 2, we know that every divisor D ⊂ X is free
[10], cor. 1.7. Let {δ1, δ2} be a basis of Der(logD)x. Their symbols {σ1, σ2}
are obviously linearly independent over O, and by Saito’s Criterion [10], 1.8,
they are relatively primes in GrF •(D) = O[ξ1, ξ2]. So they form a regular
sequence in GrF •(D), and D is Koszul free (see [2], cor. 4.2.2).
4) Proposition 2.7 gives a way to obtain Koszul free divisors in any dimension.
5) There are irreducible Koszul free divisors Y in dimensions greater than 2,
which are not normal crossing and do not have non trivial factors [9]: X = C

3

and Y ≡ {f = 0}, with

f = 28z3 − 27x2z2 + 24x4z + 2432xy2z − 22x3y2 − 33y4.

A basis of Der(log f) is {δ1, δ2, δ3}, with

δ1 = 6y ∂x + (8z − 2x2) ∂y − xy ∂z,
δ2 = (4x2 − 48z) ∂x + 12xy ∂y + (9y2 − 16xz) ∂z,
δ3 = 2x ∂x + 3y ∂y + 4z ∂z,

and the sequence {σ(δ1), σ(δ2), σ(δ3)} is GrF •(D)-regular.

3 Main results

Proposition 3.1.– Let D be a free divisor in some analytic manifold X
and let Σ ⊂ D a discrete set of points. If D is Koszul free at every point
x ∈ D \ Σ, then D is Koszul free (at every point of D).

Proof: Let p ∈ Σ and let {δ1, . . . , δn} be a basis of the logarithmic
derivations of D at p. By corollary 2.6, we have to prove that the symbols
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σi = σ(δi) define an analytic set V = V (σ1, . . . , σn) ⊂ π−1(U) of dimension
n = dimX, for some open neighborhood U ⊂ X of p. Let U be an open
neighborhood of p such that U ∩Σ = {p}. By hypothesis, we know that D is
Koszul free in U \{p}, and so (loc. cit.) the dimension of V ∩π−1(U \{p}) =
V \T ∗pX is n. Now, let W be an irreducible component of V . It has, at least,
dimension n. If W is contained in T ∗pX, then it must be equal to T ∗pX, and
dimW = n. If not, dimW = dim(W \ T ∗pX) ≤ dim(V \ T ∗pX) = n. So, we
conclude that V has dimension n. C.Q.D.

Theorem 3.2.– Every locally quasi-homogeneous free divisor is Koszul free.

Proof: We proceed by induction on the dimension t of the ambient
manifold X. For t = 1, the theorem is trivial and for t = 2, the theorem is
directly proved in examples 2.8, 3). Now, we suppose that the result is true
for t < n, and let D be a locally quasi-homogeneous free divisor of a complex
analytic manifold X of dimension n. Let p ∈ D and let {δ1, . . . , δn} be a
basis of the logarithmic derivations of D at p.

Thanks to [4], prop. 2.4 and lemma 2.2, (iv), there is an open neighbor-
hood U of p such that for each q ∈ U ∩ D, with q 6= p, the germ of pair
(X,D, q) is isomorphic to a product (Cn−1 × C, D′ × C, (0, 0)), where D′ is
a locally quasi-homogeneous free divisor. Induction hypothesis implies that
D′ is a Koszul free divisor at 0. Then, by proposition 2.7.1., D is a Koszul
free divisor at q too. We have then proved that D is a Koszul free divisor in
U \ {p}. We conclude by using proposition 3.1. C.Q.D.

Corollary 3.3.– Every free divisor that is locally quasi-homogeneous at the
complement of a discrete set, is Koszul free.

In particular, the last corollary gives rise a new proof of the fact that
every divisor in dimension 2 is Koszul free (cf. 2.8, 3)).

4 Examples

We know several (related) kind of free divisors:

[LQH] Locally quasi-homogeneous (definition 2.2).

[EH] Euler homogeneous (definition 2.1).
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[LCT] Free divisors satisfying the logarithmic comparison theorem.

[KF] Koszul free (definition 2.3).

[P] Free divisors such that the complex Ω•X(logD) is a perverse sheaf.

We have then the following implications:

[LQH] ⇒ [EH] (obvious), [LQH] ⇒ [LCT] by [4], th. 1.1,
[LCT] ⇒ [P], by [8], II, th. 2.2.4) [KF] ⇒ [P] by [2], th. 4.2.1,

[LQH] ⇒ [KF] by theorem 3.2.

Example 4.1.– (Free divisors in dimension 2) We recall theorem 3.9 from
[3]: Let X be a complex analytic manifold of dimension 2 and D ⊂ X a
divisor. The following conditions are equivalent:
1. D is Euler homogeneous.
2. D is locally quasi-homogeneous.
3. The logarithmic comparison theorem holds for D.
Consequently, in dimension 2 we have:

[LQH]⇔ [EH]⇔ [LCT]

and [KF] and [P] always hold (cf. 2.8, 3)). In particular,

[KF] 6⇒ [LQH], [EH], [LCT].

Examples of plane curves not satisfying logarithmic comparison theorem are,
for instance, the curves of the family (cf. [3]):

xq + yq + xyp−1 = 0, p ≥ q + 1 ≥ 5.

Example 4.2.– (An example in dimension 3) Let consider X = C
3 and

D = {f = 0}, with f = xy(x + y)(y + zx) [2]. A basis of Der(logD) is
{δ1, δ2, δ3}, with

δ1 = x∂x + y∂y,
δ2 = x2∂x − y2∂y − z(x+ y)∂z,
δ3 = xz + y∂z,

the determinant of the coefficients matrix being −f and

δ1(f) = 4f, δ2(f) = (2x− 3y)f, δ3(f) = xf.
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In particular, D is Euler homogeneous and satisfies the logarithmic com-
parison theorem [3]. Let I ⊂ OT ∗X be the ideal generated by the symbols
{σ1, σ2, σ3} of the basis of Der(logD). By corollary 2.6, D is not Koszul free,
because the dimension of V (I) at ((0, 0, λ), 0) ∈ T ∗X is greater than 3. So,
D is not locally quasi homogeneous neither.
So:

[LCT] 6⇒ [KF], [LQH], [EH] 6⇒ [KF], [LQH].

Finally, for the only relation that we have not solved, we quote the fol-
lowing conjecture from [3]:

Conjecture 4.3.– If the logarithmic comparison theorem holds for D, then
D is Euler homogeneous.
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