CONTROL OF PARABOLIC PROBLEMS AND BLOCK MOMENT METHOD

Morgan MORANCEY

I2M, Aix-Marseille Université

September 2025

Workshop on PDEs and Control, Sevilla.

Collaborations with F. Ammar Khodja (Besançon), A. Benabdallah (Marseille), F. Boyer (Toulouse), M. González-Burgos (Sevilla), M. Mehrenberger (Marseille), L. de Teresa (Mexico)

Abstract linear control problem

$$\begin{cases} y'(t) + \mathcal{A}y(t) = \mathcal{B}u(t), & t \in (0, T), \\ y(0) = y_0. \end{cases}$$

- $-\mathcal{A}$ generates a C^0 -semigroup on the Hilbert space $(X, \|\cdot\|)$,
- The space of controls is the Hilbert space $(U, \|\cdot\|_U)$.
- The control operator $\mathcal{B}: U \to D(\mathcal{A}^*)'$. Assume (for simplicity) that

$$\int_0^T \left\| \mathcal{B}^* e^{-t\mathcal{A}^*} z \right\|_U^2 dt \le C \|z\|^2, \qquad \forall z \in D(\mathcal{A}^*).$$

Notion of solution

Wellposedness theorem

Let T > 0. For any $y_0 \in X$ and any $u \in L^2(0,T;U)$, there exists a unique solution $y \in C^0([0,T],X)$ characterized by

$$\langle y(t), z \rangle - \langle y_0, e^{-tA^*}z \rangle = \int_0^t \langle u(\tau), \mathcal{B}^* e^{-(t-\tau)A^*}z \rangle_U d\tau,$$

for any $t \in [0, T]$, and any $z \in X$.

Moreover, there exists C > 0 such that for any such y_0 , u, the solution satisfies

$$||y(t)|| \le C (||y_0|| + ||u||_{L^2(0,T;U)}), \quad \forall t \in [0,T].$$

• Question: null controllability of a given y_0 at a given time T > 0:

$$\exists u \in L^2(0,T;U) \; ; \; y(T) = 0?$$

Typical examples

Boundary control of coupled equations

$$\begin{cases} \partial_t y_1 - \Delta y_1 + y_2 = 0, & \text{in } (0, T) \times \Omega, \\ \partial_t y_2 + \left(-\Delta + c(x) \right) y_2 = 0, & \text{in } (0, T) \times \Omega, \\ y_{1|\partial\Omega} = 0, & y_{2|\partial\Omega} = \mathbf{1}_{\Gamma} u & \text{in } (0, T) \times \partial\Omega, \\ y_1(0, \cdot) = y_{1,0}, & y_2(0, \cdot) = y_{2,0}. \end{cases}$$

Simultaneous controllability

$$\begin{cases} \partial_t y_1 - \Delta y_1 = \mathbf{1}_{\omega} u, & \text{in } (0, T) \times \Omega, \\ \partial_t y_2 + \left(-\Delta + c(x) \right) y_2 = \mathbf{1}_{\omega} u, & \text{in } (0, T) \times \Omega, \\ y_{1|\partial\Omega} = y_{2|\partial\Omega} = 0 & \text{in } (0, T) \times \partial\Omega, \\ y_1(0, \cdot) = y_{1,0}, \quad y_2(0, \cdot) = y_{2,0}. \end{cases}$$

- Control of parabolic problems and moment problems
 - Moment problems and biorthogonal families
 - A limitation in the use of biorthogonal families
- 2 The block moment method for scalar controls
 - Setting
 - The block moment problem and its resolution
- 3 How does it relate to similar results for wave-like equations?
- 4 The block moment method for general control operators
- Biorthogonal families in higher dimension
 - Setting and biorthogonal families
 - Ingredients of proof

- Control of parabolic problems and moment problems
 - Moment problems and biorthogonal families
 - A limitation in the use of biorthogonal families
- 2 The block moment method for scalar controls
- 3 How does it relate to similar results for wave-like equations?
- 4 The block moment method for general control operators
- 5 Biorthogonal families in higher dimension

The setting

- Assume that the operator \mathcal{A}^* admits a sequence of positive eigenvalues Λ .
- We denote by $(\phi_{\lambda})_{\lambda \in \Lambda}$ the associated sequence of normalized eigenvectors and we assume that it forms a complete family in X.

The setting

- Assume that the operator \mathcal{A}^* admits a sequence of positive eigenvalues Λ .
- We denote by $(\phi_{\lambda})_{{\lambda} \in {\Lambda}}$ the associated sequence of normalized eigenvectors and we assume that it forms a complete family in X.

Definition of solutions: for all $\lambda \in \Lambda$,

$$\langle y(T), \phi_{\lambda} \rangle - \langle y_0, e^{-\lambda T} \phi_{\lambda} \rangle = \int_0^T \langle u(t), e^{-\lambda (T-t)} \mathcal{B}^* \phi_{\lambda} \rangle_U dt.$$

The setting

- Assume that the operator \mathcal{A}^* admits a sequence of positive eigenvalues Λ .
- We denote by $(\phi_{\lambda})_{{\lambda} \in \Lambda}$ the associated sequence of normalized eigenvectors and we assume that it forms a complete family in X.

Definition of solutions: for all $\lambda \in \Lambda$,

$$\langle y(T), \phi_{\lambda} \rangle - \langle y_0, e^{-\lambda T} \phi_{\lambda} \rangle = \int_0^T \langle u(t), e^{-\lambda (T-t)} \mathcal{B}^* \phi_{\lambda} \rangle_U dt.$$

Complete family of eigenvectors $(\phi_{\lambda})_{\lambda \in \Lambda}$:

$$y(T) = 0 \iff \int_0^T \left\langle u(t), e^{-\lambda(T-t)} \mathcal{B}^* \phi_{\lambda} \right\rangle_U dt = -\left\langle y_0, e^{-\lambda T} \phi_{\lambda} \right\rangle, \, \forall \lambda \in \Lambda$$

The setting

- Assume that the operator \mathcal{A}^* admits a sequence of positive eigenvalues Λ .
- We denote by $(\phi_{\lambda})_{{\lambda} \in {\Lambda}}$ the associated sequence of normalized eigenvectors and we assume that it forms a complete family in X.

Definition of solutions: for all $\lambda \in \Lambda$,

$$\langle y(T), \phi_{\lambda} \rangle - \langle y_0, e^{-\lambda T} \phi_{\lambda} \rangle = \int_0^T \langle u(t), e^{-\lambda (T-t)} \mathcal{B}^* \phi_{\lambda} \rangle_U dt.$$

Complete family of eigenvectors $(\phi_{\lambda})_{\lambda \in \Lambda}$:

$$y(T) = 0 \iff \int_0^T \left\langle u(t), e^{-\lambda(T-t)} \mathcal{B}^* \phi_{\lambda} \right\rangle_U dt = -\left\langle y_0, e^{-\lambda T} \phi_{\lambda} \right\rangle, \, \forall \lambda \in \Lambda$$

$$\iff \left(\int_0^T \left\langle v(t), e^{-\lambda t} \mathcal{B}^* \phi_{\lambda} \right\rangle_U dt = -\left\langle y_0, e^{-\lambda T} \phi_{\lambda} \right\rangle, \, \forall \lambda \in \Lambda \right)$$

with $v := u(T - \cdot)$.

Reduction to a moment problem when $\dim U = 1$

• Scalar control (dim U=1) with observable eigenvectors ($\mathcal{B}^*\phi_\lambda \neq 0$)

$$y(T) = 0 \iff \int_0^T e^{-\lambda t} \left\langle v(t), \mathcal{B}^* \phi_{\lambda} \right\rangle_U dt = -\left\langle y_0, e^{-\lambda T} \phi_{\lambda} \right\rangle, \ \forall \lambda \in \Lambda$$

$$\iff \mathcal{B}^* \phi_{\lambda} \int_0^T e^{-\lambda t} v(t) dt = -\left\langle y_0, e^{-\lambda T} \phi_{\lambda} \right\rangle, \ \forall \lambda \in \Lambda$$

$$\iff \left(\int_0^T e^{-\lambda t} v(t) dt = -e^{-\lambda T} \left\langle y_0, \frac{\phi_{\lambda}}{\mathcal{B}^* \phi_{\lambda}} \right\rangle, \ \forall \lambda \in \Lambda \right)$$

Resolution of the moment problem using a biorthogonal family

Find
$$v$$
 such that $\int_0^T e^{-\lambda t} v(t) dt = -e^{-\lambda T} \left\langle y_0, \frac{\phi_{\lambda}}{\mathcal{B}^* \phi_{\lambda}} \right\rangle, \ \forall \lambda \in \Lambda$

Biorthogonal family $(q_{\lambda})_{{\lambda}\in\Lambda}$ to the exponentials associated with Λ in $L^2(0,T;\mathbb{R})$

$$\begin{cases} \int_0^T e^{-\mu t} q_{\lambda}(t) \mathrm{d}t = 0, & \forall \mu \in \Lambda \backslash \{\lambda\}, \\ \int_0^T e^{-\lambda t} q_{\lambda}(t) \mathrm{d}t = 1. \end{cases}$$

Resolution of the moment problem using a biorthogonal family

Find
$$v$$
 such that $\int_0^T e^{-\lambda t} v(t) dt = -e^{-\lambda T} \left\langle y_0, \frac{\phi_{\lambda}}{\mathcal{B}^* \phi_{\lambda}} \right\rangle, \ \forall \lambda \in \Lambda$

Biorthogonal family $(q_{\lambda})_{{\lambda}\in\Lambda}$ to the exponentials associated with Λ in $L^2(0,T;\mathbb{R})$

$$\begin{cases} \int_0^T e^{-\mu t} q_{\lambda}(t) \mathrm{d}t = 0, & \forall \mu \in \Lambda \backslash \{\lambda\}, \\ \int_0^T e^{-\lambda t} q_{\lambda}(t) \mathrm{d}t = 1. \end{cases}$$

Existence of such biorthogonal family $\stackrel{\text{Schwartz}}{\Longleftrightarrow} \sum_{\lambda \in \Lambda} \frac{1}{\lambda} < +\infty.$

Applications to heat-like PDEs are restricted to the 1D case.

Resolution of the moment problem using a biorthogonal family

Find
$$v$$
 such that $\int_0^T e^{-\lambda t} v(t) dt = -e^{-\lambda T} \left\langle y_0, \frac{\phi_{\lambda}}{\mathcal{B}^* \phi_{\lambda}} \right\rangle, \ \forall \lambda \in \Lambda$

Biorthogonal family $(q_{\lambda})_{{\lambda}\in\Lambda}$ to the exponentials associated with Λ in $L^2(0,T;\mathbb{R})$

$$\begin{cases} \int_0^T e^{-\mu t} q_{\lambda}(t) \mathrm{d}t = 0, & \forall \mu \in \Lambda \backslash \{\lambda\}, \\ \int_0^T e^{-\lambda t} q_{\lambda}(t) \mathrm{d}t = 1. \end{cases}$$

Existence of such biorthogonal family

$$\stackrel{\text{Schwartz}}{\Longleftrightarrow} \sum_{\lambda \in \Lambda} \frac{1}{\lambda} < +\infty.$$

In this case,

$$u: t \in (0,T) \mapsto -\sum_{\lambda \in \Lambda} e^{-\lambda T} \left\langle y_0, \frac{\phi_{\lambda}}{\mathcal{B}^* \phi_{\lambda}} \right\rangle q_{\lambda}(T-t)$$

formally solves the moment problem.

Question: estimate $\mathcal{B}^*\phi_{\lambda}$ and $\|q_{\lambda}\|_{L^2(0,T;\mathbb{R})}$ to prove that the series converges in $L^2(0,T;\mathbb{R})$.

Some estimates on biorthogonal families

Under the gap condition $(|\lambda - \mu| > \rho, \quad \forall \lambda \neq \mu \in \Lambda)$.

- H.O. Fattorini & D.L Russell (1974): $||q_{\lambda}||_{L^{2}(0,T;\mathbb{R})} \leq C_{\varepsilon,T}e^{\varepsilon\lambda}$. Uniform estimates with respect to Λ in a certain class.
- A. Benabdallah, F. Boyer, M. González Burgos & G. Olive (2014) Sharper estimates + dependency /T: $||q_{\lambda}||_{L^{2}(0,T;\mathbb{R})} \leq Ce^{C/T}e^{C\sqrt{\lambda}}$.
- P. Cannarsa, P. Martinez & J. Vancostenoble (2020)
 Optimal estimates + dealing with asymptotic gap.

Under a weak gap condition (gap between blocks of bounded cardinality)

- N. Cîndea, S. Micu, I. Roventa & M.Tucsnak (2015)
 Union of two sequences with gap condition plus a non-condensation assumption
- A. Benabdallah, F. Boyer & M. M. (2020)
- M. González Burgos & L. Ouaili (2020)

Without any gap condition

- F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014) Condensation index of the sequence.
- D. Allonsius, F. Boyer & M. Morancey (2021)
 "Local" gap for each λ.

Perturbation of a Jordan-block: positive controllability result

$$\mathcal{A}y = \begin{pmatrix} -\partial_{xx} & 1 \\ 0 & -\partial_{xx} + \exp(a\partial_{xx}) \end{pmatrix} y, \qquad \mathcal{B} = \begin{pmatrix} 0 \\ \text{a nice scalar control operator} \end{pmatrix}.$$

Eigenvectors of $-\partial_{xx}$: $-\partial_{xx}\varphi_k = k^2\varphi_k$. Thus,

$$\Lambda = \left\{ \lambda_{k,1} := k^2, \ \lambda_{k,2} := k^2 + e^{-ak^2} \ ; \ k \in \mathbb{N}^* \right\}$$

Complete family of associated eigenvectors of \mathcal{A}^* :

$$\phi_{k,1} = \begin{pmatrix} -e^{-ak^2} \\ 1 \end{pmatrix} \varphi_k, \qquad \phi_{k,2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \varphi_k,$$

F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014): there exists a biorthogonal family satisfying

$$\frac{1}{C_{\varepsilon}}e^{(a-\varepsilon)\lambda} \le ||q_{\lambda}||_{L^{2}(0,T;\mathbb{R})} \le C_{\varepsilon}e^{(a+\varepsilon)\lambda}.$$

Limitation in the use of biorthogonal families

Formal solution of moment problem given by

$$u: t \in (0,T) \mapsto -\sum_{\lambda \in \Lambda} e^{-\lambda T} \left\langle y_0, \frac{\phi_{\lambda}}{\mathcal{B}^* \phi_{\lambda}} \right\rangle q_{\lambda} (T-t)$$

Limitation in the use of biorthogonal families

Formal solution of moment problem given by

$$u: t \in (0,T) \mapsto -\sum_{\lambda \in \Lambda} e^{-\lambda T} \left\langle y_0, \frac{\phi_{\lambda}}{\mathcal{B}^* \phi_{\lambda}} \right\rangle \underbrace{q_{\lambda}(T-t)}_{\|\cdot\| \simeq e^{a\lambda}}$$

 \longrightarrow Direct application of moments method yields null controllability in time T > a.

Introducing the block summation

Yet, we will see that the previous example is null controllable in any time T > 0...

What is missed in the direct application of the moment method? Only information on $||q_{\lambda}||$: proof of normal convergence of the series in $L^{2}(0, T; \mathbb{R})$

Only information on $||q_{\lambda}||$: proof of normal convergence of the series in $L^{2}(0,T;\mathbb{R})$ which is not the most subtle convergence...

As $\lambda_{k,1} \approx \lambda_{k,2}$, it can be a good idea to consider the control u in the form

$$u: t \in (0,T) \mapsto -\sum_{k>1} \left(\sum_{j=1}^{2} e^{-\lambda_{k,j} T} \left\langle y_0, \frac{\phi_{k,j}}{\mathcal{B}^* \phi_{k,j}} \right\rangle q_{k,j} (T-t) \right)$$

and estimate

$$\left\| \sum_{j=1}^{2} e^{-\lambda_{k,j}T} \left\langle y_0, \frac{\phi_{k,j}}{\mathcal{B}^* \phi_{k,j}} \right\rangle q_{k,j} (T - \cdot) \right\|_{L^2(0,T)}.$$

- Control of parabolic problems and moment problems
- 2 The block moment method for scalar controls
 - Setting
 - The block moment problem and its resolution
- 3 How does it relate to similar results for wave-like equations?
- 4 The block moment method for general control operators
- 5 Biorthogonal families in higher dimension

Assumptions

 \mathcal{A} and \mathcal{B} satisfy the assumptions for the wellposedness.

- Scalar control $U = \mathbb{R}$.
- Eigenvalues of \mathcal{A}^* .
 - Λ : positive simple eigenvalues of \mathcal{A}^* satisfying $\sum_{\lambda \in \Lambda} \frac{1}{\lambda} < +\infty$.
 - asymptotic behavior of the counting function: $N_{\Lambda}(r) := \operatorname{Card} \{\lambda \in \Lambda \; ; \; \lambda \leq r\} \leq \kappa r^{\theta} \text{ with } \theta \in (0,1).$
- $(\phi_{\lambda})_{{\lambda} \in {\Lambda}}$ associated eigenvectors.
 - \bullet complete family of eigenvectors in X.
 - $\operatorname{Ker}(\mathcal{A}^* \lambda) \cap \operatorname{Ker} \mathcal{B}^* = \{0\}$ for every $\lambda \in \mathbb{R}$.

Extra assumption:

• Weak gap condition: there exists $\rho > 0$ and $p \in \mathbb{N}^*$ such that

$$\operatorname{Card}(\Lambda \cap [\mu, \mu + \rho]) \le p, \quad \forall \mu \ge 0.$$

Groups of eigenvalues

Let $p \in \mathbb{N}^*$ and $\rho > 0$. The weak-gap condition ensures the existence of sets $(G_k)_{k \geq 1} \subset \mathcal{P}(\Lambda)$ such that

$$\Lambda = \bigcup_{k>1} G_k, \qquad \sup(G_k) < \inf(G_{k+1}),$$

with the additional properties that for every $k \geq 1$,

$$g_k := \#G_k \le p,$$
 $\operatorname{dist}(G_k, G_{k+1}) \ge r,$ $\operatorname{diam} G_k < \rho.$

with $r = r_{p,\rho} > 0$.

• Labelling the eigenelements

$$G_k = \{\lambda_{k,1}, \dots, \lambda_{k,g_k}\} \quad \text{with } \lambda_{k,1} < \dots < \lambda_{k,g_k},$$
$$\phi_{k,j} := \phi_{\lambda_{k,j}}, \quad \forall k \ge 1, \ \forall 1 \le j \le g_k.$$

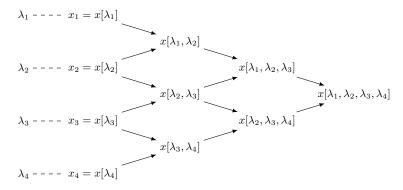
• The analysis is insensitive to the particular choice of such a grouping.

Divided differences in a given group G_k

- For any j, set $x[\lambda_j] := x_j$.
- Divided differences. For any $i \neq j$ we set

$$x[\lambda_i, \lambda_j] := \frac{x[\lambda_j] - x[\lambda_i]}{\lambda_j - \lambda_i} \in X.$$

and so on ... following the diagram



The block moment problem

$$y(T) = 0 \iff \int_0^T e^{-\lambda(T-t)} u(t) dt = -e^{-\lambda T} \left\langle y_0, \frac{\phi_{\lambda}}{\mathcal{B}^* \phi_{\lambda}} \right\rangle, \ \forall \lambda \in \Lambda$$

$$\iff \int_0^T e^{-\lambda(T-t)} u(t) dt = -e^{-\lambda T} \left\langle y_0, \psi_{\lambda} \right\rangle, \ \forall \lambda \in \Lambda$$

$$\text{where } \psi_{\lambda} := \frac{\phi_{\lambda}}{\mathcal{B}^* \phi_{\lambda}}.$$

Look for u in the form

$$u: t \in (0,T) \mapsto -\sum_{k>1} v_k(T-t)$$

where

$$\begin{cases} \int_0^T e^{-\lambda_{k,j}t} v_k(t) dt = e^{-\lambda_{k,j}T} \langle y_0, \psi_{k,j} \rangle, & \forall k \ge 1, \ \forall 1 \le j \le g_k, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \backslash G_k. \end{cases}$$

The function v_k solves the moment problem inside the group G_k .

Resolution of the block moment problem

A. Benabdallah, F. Boyer & M. M. (2020)

Let $T \in (0, +\infty]$. For any $\varepsilon > 0$, there exists a constant C > 0 such that for any $k \ge 1$, for any $\omega_{k,1}, \ldots, \omega_{k,g_k} \in \mathbb{R}$, there exists $v_k \in L^2(0,T;\mathbb{R})$ satisfying

$$\begin{cases} \int_0^T e^{-\lambda_{k,j}t} v_k(t) dt = \omega_{k,j}, & \forall 1 \le j \le g_k, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \backslash G_k, \end{cases}$$

and

$$||v_k||_{L^2(0,T;\mathbb{R})} \le Ce^{C/T^{\frac{\theta}{1-\theta}}} e^{C\lambda_{k,1}^{\theta}} \max_{1 \le l \le g_k} \left| \omega[\lambda_{k,1},\ldots,\lambda_{k,l}] \right|.$$

Moreover, up to the exponential factors, this last estimate is sharp.

Adaptation of H.O. Fattorini & D.L. Russell (1974) using the isomorphism of the Laplace transform and refined estimates using Paley-Wiener theorem (F. Boyer - M2 lecture notes (HAL))

Application to null controllability

Block moment problem associated to null controllability

$$\begin{cases} \int_0^T e^{-\lambda_{k,j}t} v_k(t) dt = e^{-\lambda_{k,j}T} \langle y_0, \psi_{k,j} \rangle, & \forall k \ge 1, \ \forall 1 \le j \le g_k, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \forall \lambda \in \Lambda \backslash G_k, \end{cases}$$

where $\psi_{\lambda} = \frac{\phi_{\lambda}}{\mathcal{B}^* \phi_{\lambda}}$. The solution satisfies

$$\|v_k\|_{L^2(0,T;\mathbb{R})} \leq C e^{C/T^{\frac{\theta}{1-\theta}}} e^{C\lambda_{k,1}^\theta} e^{-\lambda_{k,1}T} \max_{1\leq l \leq g_k} \|\psi[\lambda_{k,1},\dots,\lambda_{k,l}]\|.$$

• Sufficiently sharp estimates to characterize the minimal null control time as

$$T_0 = \limsup_{k \to \infty} \frac{\ln \left(\max_{1 \le l \le g_k} \|\psi[\lambda_{k,1}, \dots, \lambda_{k,l}]\| \right)}{\lambda_{k,1}}.$$

Comments

- Extension to complex eigenvalues in a sector of dominant real part.
- Uniform estimates: similar results for algebraically multiple eigenvalues (limit process $\lambda, \lambda + h$).
- Application
 - K. Bhandari & F. Boyer (2021): boundary control, from Robin to Dirichlet boundary conditions.
 - F. Boyer & G. Olive (2023): 2D coupled heat equations with different constant diffusion coefficient.

$$\mathcal{A}y = \begin{pmatrix} -\partial_{xx} & 1\\ 0 & -\partial_{xx} + \exp(a\partial_{xx}) \end{pmatrix} y, \qquad \mathcal{B} = \begin{pmatrix} 0\\ \text{a nice scalar control operator} \end{pmatrix}.$$

$$\Lambda = \left\{ \lambda_{k,1} := k^2, \ \lambda_{k,2} := k^2 + e^{-ak^2} \ ; \ k \in \mathbb{N}^* \right\} \implies \#G_k = 2$$

$$T_{0} = \limsup_{k \to \infty} \frac{1}{\lambda_{k,1}} \ln \max \left\{ \frac{1}{|\mathcal{B}^{*}\phi_{k,1}|}, \frac{1}{|\mathcal{B}^{*}\phi_{k,2}|}, \frac{\left\| \frac{\phi_{k,2}}{\mathcal{B}^{*}\phi_{k,2}} - \frac{\phi_{k,1}}{\mathcal{B}^{*}\phi_{k,1}} \right\|}{\lambda_{k,2} - \lambda_{k,1}} \right\} = 0.$$

Indeed,

$$\phi_{k,1} = \begin{pmatrix} -e^{-ak^2} \\ 1 \end{pmatrix} \varphi_k, \qquad \phi_{k,2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \varphi_k,$$

imply

$$\mathcal{B}^* \phi_{k,1} = \mathcal{B}^* \phi_{k,2} = \text{nice}$$
 and $\|\phi_{k,2} - \phi_{k,1}\| = e^{-ak^2} = |\lambda_{k,2} - \lambda_{k,1}|.$

The condensation of eigenvectors compensates the condensation of eigenvalues.

A PDE example behaving as the academic example

$$\begin{cases} \partial_t y(t,x) + \begin{pmatrix} -\partial_{xx} & 1 \\ 0 & -\partial_{xx} + c(x) \end{pmatrix} y(t,x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, & (t,x) \in (0,T) \times (0,1), \\ y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, & y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, & t \in (0,T), \\ y(0,x) = y_0(x), & x \in (0,1), \end{cases}$$

For any $c \in L^2(0,1;\mathbb{R})$

- possible presence of algebraically double eigenvalues;
- possible strong condensation of eigenvalues;
- possible (finite number of) non observable modes.

There exists $Y_0 \subset (H^{-1}(0,1;\mathbb{R}))^2$ with finite codimension such that

- if $y_0 \not\in Y_0$: not approximately controllable;
- if $y_0 \in Y_0$: null controllability in any time T > 0.

- 1 Control of parabolic problems and moment problems
- 2 The block moment method for scalar controls
- 3 How does it relate to similar results for wave-like equations?
- 4 The block moment method for general control operators
- 5 Biorthogonal families in higher dimension

Control of 1D wave-like equations with a gap condition

$$\begin{cases} \partial_{ss} w - \partial_{xx} w + w = 0, & (s, x) \in (0, S) \times (0, 1), \\ w(s, 0) = u(s), & w(s, 1) = 0, \\ (w, w_s)(0, \cdot) = (w_0, w_1). \end{cases}$$

- Eigenvalues of \mathcal{A}^* : $\mu_k = \operatorname{sign}(k) \sqrt{k^2 \pi^2 + 1}$ for $k \in \mathbb{Z}$.
- Gap-condition: $\gamma = \inf_{k \in \mathbb{Z}} |\mu_{k+1} \mu_k| > 0.$
- Ingham's inequality

For any $S > \frac{2\pi}{\gamma}$,

$$\frac{1}{C} \sum_{k \in \mathbb{Z}} |a_k|^2 \le \int_0^s \left| \sum_{k \in \mathbb{Z}} a_k e^{i\mu_k s} \right|^2 ds \le C \sum_{k \in \mathbb{Z}} |a_k|^2.$$

Ingham's inequality \implies observability inequality (\iff controllability).

Control of 1D wave-like equations with a weak-gap condition

With a weak-gap condition (simultaneous control of strings with different lengths): generalized Ingham-type inequality for divided differences of the time-exponentials inside the blocks:

$$\frac{1}{C} \sum_{k \in \mathbb{Z}} \sum_{j=1}^{g_k} |a_{k,j}|^2 \le \int_0^S \left| \sum_{k \in \mathbb{Z}} \sum_{j=1}^{g_k} a_k e_{is} \left[\mu_{k,1}, \dots, \mu_{k,j} \right] \right|^2 ds \le C \sum_{k \in \mathbb{Z}} \sum_{j=1}^{g_k} |a_k|^2$$

where $e_{\bullet}: x \in \mathbb{R} \mapsto e^{\bullet x}$.

Recall that

$$e_{is}\left[\mu_{k,1},\mu_{k,2}\right] = \frac{e^{i\mu_{k,2}s} - e^{i\mu_{k,1}s}}{\mu_{k,2} - \mu_{k,1}}.$$

See, for instance, V. Komornik & P. Loreti (2002).

Back to the parabolic world: $G_k = \{\lambda_{k,1}, \lambda_{k,2}\}$

Biorthogonal family to the divided differences of time exponentials inside the block:

$$\begin{cases} \int_0^T e^{-\lambda_{k,1}t} q_{k,1}(t) dt = 1, \\ \int_0^T \frac{e^{-\lambda_{k,2}t} - e^{-\lambda_{k,1}t}}{\lambda_{k,2} - \lambda_{k,1}} q_{k,1}(t) dt = 0, \\ \int_0^T e^{-\lambda t} q_{k,1}(t) dt = 0, \quad \lambda \in \Lambda \backslash G_k, \end{cases}$$

$$\begin{cases} \int_{0}^{T} e^{-\lambda_{k,1}t} q_{k,1}(t) dt = 1, \\ \int_{0}^{T} \frac{e^{-\lambda_{k,2}t} - e^{-\lambda_{k,1}t}}{\lambda_{k,2} - \lambda_{k,1}} q_{k,1}(t) dt = 0, \\ \int_{0}^{T} e^{-\lambda t} q_{k,1}(t) dt = 0, \quad \lambda \in \Lambda \backslash G_{k}, \end{cases} \begin{cases} \int_{0}^{T} e^{-\lambda_{k,1}t} q_{k,1,2}(t) dt = 0, \\ \int_{0}^{T} \frac{e^{-\lambda_{k,2}t} - e^{-\lambda_{k,1}t}}{\lambda_{k,2} - \lambda_{k,1}} q_{k,1,2}(t) dt = 1, \\ \int_{0}^{T} e^{-\lambda t} q_{k,1,2}(t) dt = 0, \quad \lambda \in \Lambda \backslash G_{k}. \end{cases}$$

Back to the parabolic world: $G_k = \{\lambda_{k,1}, \lambda_{k,2}\}$

$$\begin{cases} \int_0^T e^{-\lambda_{k,1}t}q_{k,1}(t)\mathrm{d}t = 1, \\ \int_0^T \frac{e^{-\lambda_{k,2}t} - e^{-\lambda_{k,1}t}}{\lambda_{k,2} - \lambda_{k,1}}q_{k,1}(t)\mathrm{d}t = 0, \\ \int_0^T e^{-\lambda t}q_{k,1}(t)\mathrm{d}t = 0, \quad \lambda \in \Lambda \backslash G_k, \end{cases} \begin{cases} \int_0^T e^{-\lambda_{k,1}t}q_{k,1,2}(t)\mathrm{d}t = 0, \\ \int_0^T e^{-\lambda_{k,2}t} - e^{-\lambda_{k,1}t}q_{k,1,2}(t)\mathrm{d}t = 1, \\ \int_0^T e^{-\lambda t}q_{k,1}(t)\mathrm{d}t = 0, \quad \lambda \in \Lambda \backslash G_k. \end{cases}$$

• Block resolution \Longrightarrow biorthogonal family to the divided differences

$$\begin{cases} \int_{0}^{T} e^{-\lambda_{k,1}t} q_{k,1}(t) dt = 1, \\ \int_{0}^{T} e^{-\lambda_{k,2}t} q_{k,1}(t) dt = 1, \\ \int_{0}^{T} e^{-\lambda_{k,2}t} q_{k,1}(t) dt = 0, \quad \lambda \in \Lambda \backslash G_{k}, \end{cases} \begin{cases} \int_{0}^{T} e^{-\lambda_{k,1}t} q_{k,1,2}(t) dt = 0, \\ \int_{0}^{T} e^{-\lambda_{k,2}t} q_{k,1,2}(t) dt = \lambda_{k,2} - \lambda_{k,1}, \\ \int_{0}^{T} e^{-\lambda t} q_{k,1,2}(t) dt = 0, \quad \lambda \in \Lambda \backslash G_{k}. \end{cases}$$

Back to the parabolic world: $G_k = \{\lambda_{k,1}, \lambda_{k,2}\}$

$$\begin{cases} \int_0^T e^{-\lambda_{k,1}t} q_{k,1}(t) \mathrm{d}t = 1, \\ \int_0^T \frac{e^{-\lambda_{k,2}t} - e^{-\lambda_{k,1}t}}{\lambda_{k,2} - \lambda_{k,1}} q_{k,1}(t) \mathrm{d}t = 0, \\ \int_0^T e^{-\lambda t} q_{k,1}(t) \mathrm{d}t = 0, \quad \lambda \in \Lambda \backslash G_k, \end{cases} \begin{cases} \int_0^T e^{-\lambda_{k,2}t} q_{k,1,2}(t) \mathrm{d}t = 0, \\ \int_0^T e^{-\lambda_{k,2}t} - e^{-\lambda_{k,1}t} q_{k,1,2}(t) \mathrm{d}t = 1, \\ \int_0^T e^{-\lambda t} q_{k,1,2}(t) \mathrm{d}t = 0, \quad \lambda \in \Lambda \backslash G_k. \end{cases}$$

- Block resolution ⇒ biorthogonal family to the divided differences
- ullet Block resolution $\begin{tabular}{l} \end{tabular}$ biorthogonal family to the divided differences Let

$$v_k = \omega_{k,1} q_{k,1} + \frac{\omega_{k,2} - \omega_{k,1}}{\lambda_{k,2} - \lambda_{k,1}} q_{k,1,2}.$$

Then,

$$\begin{cases} \int_0^T e^{-\lambda_{k,j}t} v_k(t) dt = \omega_{k,j}, & \forall j \in \{1,2\}, \\ \int_0^T e^{-\lambda t} v_k(t) dt = 0, & \lambda \in \Lambda \backslash G_k. \end{cases}$$

Block moment problem and biorthogonal family to divided differences

M. Mehrenberger, M. M. (≥ 2025)

Solvability of block moment problems at cost

$$||v_k||_{L^2(0,T)} \le \mathfrak{C}(T,G_k) \times \sum_{j=1}^{g_k} |\omega[\lambda_{k,1},\ldots,\lambda_{k,j}]|, \quad \forall k \ge 1,$$

 \iff

Existence of a biorthogonal family $(q_{\ell,m})_{\ell \geq 1, 1 \leq m \leq g_{\ell}}$ to the divided differences in the blocks of the time exponentials i.e. $\forall k, \ell \geq 1, \forall j : 1 \leq j \leq g_k, \forall m : 1 \leq m \leq g_{\ell},$

$$\int_0^T e_{-t} \left[\lambda_{k,1}, \dots, \lambda_{k,j} \right] q_{\ell,m}(t) dt = \delta_{k\ell} \delta_{jm}$$

with

$$||q_{\ell,m}||_{L^2(0,T)} \le \mathfrak{C}(T,G_\ell).$$

Alternative proof of resolution of block moment problems

Follows a remark from C. Laurent & M. Léautaud (2023).

Assume that $\sqrt{\Lambda}$ satisfies a weak-gap condition.

- Generalized Ingham-type inequality for the divided differences of the complex time exponentials associated with √Λ;
- existence of a bounded biorthogonal family to this family;
- application of the transmutation transformation from S. Ervedoza & E. Zuazua (2011) to these biorthogonal elements;
- careful estimation of the divided differences gives

M. Mehrenberger, M. M. (≥ 2025)

$$\int_0^T e_{-t} \left[\lambda_{k,1}, \dots, \lambda_{k,j} \right] q_{\ell,m}(t) dt = \delta_{k\ell} \delta_{jm}$$

with

$$||q_{\ell,m}||_{L^2(0,T)} \le Ce^{C/T}e^{C\sqrt{\lambda_{\ell,1}}}, \quad \forall \ell \ge 1, \forall m: 1 \le m \le g_{\ell}.$$

And thus resolution of the block moment problems but under the (more restrictive) condition that $\sqrt{\Lambda}$ satisfies a weak-gap condition

- 1 Control of parabolic problems and moment problems
- 2 The block moment method for scalar controls
- 3 How does it relate to similar results for wave-like equations?
- The block moment method for general control operators
- 5 Biorthogonal families in higher dimension

General results for admissible control operators

F. Boyer & M. M. (2023)

Resolution of block moment problems with almost sharp estimates and computation of the minimal null control time under the same assumptions as in the scalar case except that 'dim U=1' is replaced by 'U a Hilbert space'.

General results for admissible control operators

F. Boyer & M. M. (2023)

Resolution of block moment problems with almost sharp estimates and computation of the minimal null control time under the same assumptions as in the scalar case except that 'dim U=1' is replaced by 'U a Hilbert space'.

For instance, let $A \bullet = -\partial_x (\gamma(x)\partial_x \bullet) + c(x) \bullet$ and consider

$$\begin{cases} \partial_t y + \begin{pmatrix} A & 1 \\ 0 & dA \end{pmatrix} y = 0, & t \in (0, T), x \in (0, 1), \\ y(t, 0) = \begin{pmatrix} u_0(t) \\ u_0(t) \end{pmatrix}, & y(t, 1) = \begin{pmatrix} 0 \\ u_1(t) \end{pmatrix}. \end{cases}$$

• F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014). Assume that $A = -\partial_{xx}$, $u_0 \equiv 0$ and $\sqrt{d} \notin \mathbb{Q}$. Then,

$$T_0\left(H^{-1}(0,1;\mathbb{R})^2\right) = \limsup_{k \to +\infty} \frac{-\ln|\lambda_{k+1} - \lambda_k|}{\lambda_k},$$

and for any $\tau \in [0, +\infty]$, there exists $d \in (0, +\infty)$ such that $T_0 = \tau$.

General results for admissible control operators

F. Boyer & M. M. (2023)

Resolution of block moment problems with almost sharp estimates and computation of the minimal null control time under the same assumptions as in the scalar case except that 'dim U=1' is replaced by 'U a Hilbert space'.

For instance, let $A \bullet = -\partial_x (\gamma(x)\partial_x \bullet) + c(x) \bullet$ and consider

$$\begin{cases} \partial_t y + \begin{pmatrix} A & 1 \\ 0 & dA \end{pmatrix} y = 0, & t \in (0, T), x \in (0, 1), \\ y(t, 0) = \begin{pmatrix} u_0(t) \\ u_0(t) \end{pmatrix}, & y(t, 1) = \begin{pmatrix} 0 \\ u_1(t) \end{pmatrix}. \end{cases}$$

• F. Boyer & M. M. (2023).

Using both controls u_0 and u_1 , for any d > 0, there exists $Y_0 \subset (H^{-1}(0,1;\mathbb{R}))^2$ with finite codimension such that

- if $y_0 \not\in Y_0$: not approximately controllable;
- if $y_0 \in Y_0$: null controllability in any time T > 0.

Space varying zero order coupling term

F. Boyer & M. M. (2025)

General expression of the minimal null control time for

$$\begin{cases} \partial_t y + \begin{pmatrix} A & q(x) \\ 0 & A \end{pmatrix} y = \begin{pmatrix} 0 \\ \mathbf{1}_{\omega}(x)u(t,x) \end{pmatrix}, & t \in (0,T), x \in (0,1), \\ y(t,0) = y(t,1) = 0. \end{cases}$$
 (S_q)

For example, with $A = -\partial_{xx}$ and $q(x) = \left(x - \frac{1}{2}\right) \mathbf{1}_{\left(\frac{1}{4}, \frac{3}{4}\right)}(x)$:

• F. Boyer & G. Olive (2014). If

$$\begin{array}{c|c}
 & \omega \\
0 & \operatorname{Supp}(q) & 1
\end{array}$$

then the problem is not approximately controllable (for any time T > 0).

If

$$0 \quad \text{Supp}(q)$$

then
$$T_0(L^2(0,1;\mathbb{R})^2) = 0$$
.

Space varying zero order coupling term

F. Boyer & M. M. (2025)

General expression of the minimal null control time for

$$\begin{cases} \partial_t y + \begin{pmatrix} A & q(x) \\ 0 & A \end{pmatrix} y = \begin{pmatrix} 0 \\ \mathbf{1}_{\omega}(x)u(t,x) \end{pmatrix}, & t \in (0,T), x \in (0,1), \\ y(t,0) = y(t,1) = 0. \end{cases}$$
 (S_q)

For example, with $A = -\partial_{xx}$, for any $\tau \in [0, +\infty]$, there exists $q, \tilde{q} \in L^{\infty}(0, 1; \mathbb{R})$ such that

- systems (S_q) and $(S_{\tilde{q}})$ are null controllable in any time T > 0;
- the minimal time for simultaneous null controllability of systems (S_q) and $(S_{\tilde{q}})$ is τ .

- Control of parabolic problems and moment problems
- 2 The block moment method for scalar controls
- 3 How does it relate to similar results for wave-like equations?
- 1 The block moment method for general control operators
 - Biorthogonal families in higher dimension
 - Setting and biorthogonal families
 - Ingredients of proof

Chiclana de la Frontera

It looks like this

Chiclana de la Frontera

So you may imagine

Chiclana de la Frontera

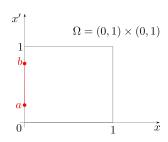
Actually it rather looks like this

An example

Simultaneous controllability on $\Omega = (0,1) \times (0,1)$.

$$\begin{cases} \partial_t y + \begin{pmatrix} -\Delta & 0\\ 0 & -\Delta + c(x) \end{pmatrix} y = 0, \\ y_{|\partial\Omega} = \begin{pmatrix} \mathbf{1}_{\Gamma} u\\ \mathbf{1}_{\Gamma} u \end{pmatrix}. \end{cases}$$

The function c satisfies $\partial_{x'}c = 0$. $\Gamma = \{0\} \times (a,b)$. Eigenelements: $(-\partial_{xx} + c(x))\varphi_k^c(x) = \lambda_k^c \varphi_k^c(x)$.

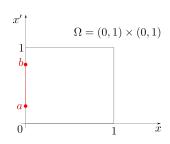


An example

Simultaneous controllability on $\Omega = (0,1) \times (0,1)$.

$$\begin{cases} \partial_t y + \begin{pmatrix} -\Delta & 0 \\ 0 & -\Delta + c(x) \end{pmatrix} y = 0, \\ y_{|\partial\Omega} = \begin{pmatrix} \mathbf{1}_{\Gamma} u \\ \mathbf{1}_{\Gamma} u \end{pmatrix}. \end{cases}$$

The function c satisfies $\partial_{x'}c = 0$. $\Gamma = \{0\} \times (a, b)$. Eigenelements: $(-\partial_{xx} + c(x))\varphi_k^c(x) = \lambda_k^c \varphi_k^c(x)$.



• Eigenvalues of \mathcal{A}^* : Assume $\lambda_k^c \neq j^2 \pi^2$, $\forall k, j \geq 1$.

$$\Lambda = \big\{ k^2 \pi^2 + m^2 \pi^2 \; ; \; k,m \geq 1 \big\} \cup \big\{ \lambda_k^c + m^2 \pi^2 \; ; \; k,m \geq 1 \big\}.$$

• L. Ouaili (2019). 1D setting: minimal null control time (Dirichlet boundary condition at x = 0) given by the condensation index of the eigenvalues

$$T_0(c) = \limsup_{k \to +\infty} \frac{-\ln|k^2 \pi^2 - \lambda_k^c|}{k^2 \pi^2}.$$

• 2D setting: same minimal time with $\Gamma = \{0\} \times (0,1)$. But $\Gamma = \{0\} \times (a,b)$??

The multi-D moment problem

• Back to the moment problem

$$y(T) = 0 \iff \int_0^T \left\langle u(T-t), e^{-\lambda t} \mathcal{B}^* \phi_{\lambda} \right\rangle_U dt = -\left\langle y_0, e^{-\lambda T} \phi_{\lambda} \right\rangle, \, \forall \lambda \in \Lambda.$$

The multi-D moment problem

Back to the moment problem

$$y(T) = 0 \quad \Longleftrightarrow \quad \int_0^T \left\langle u(T-t), e^{-\lambda t} \mathcal{B}^* \phi_{\lambda} \right\rangle_U dt = -\left\langle y_0, e^{-\lambda T} \phi_{\lambda} \right\rangle, \, \forall \lambda \in \Lambda.$$

• Eigenvalues $\lambda_{k,m}^0 = k^2 \pi^2 + m^2 \pi^2$ and $\lambda_{k,m}^c = \lambda_k^c + m^2 \pi^2$ with eigenvectors

$$(x,x') \mapsto \begin{pmatrix} \varphi_k^0(x) \sin(m\pi x') \\ 0 \end{pmatrix} \quad \text{and} \quad (x,x') \mapsto \begin{pmatrix} 0 \\ \varphi_k^c(x) \sin(m\pi x') \end{pmatrix}.$$

• Moment problem: find $v \in L^2((0,T) \times (a,b))$ such that for all $k,m \ge 1$,

$$\begin{cases} (\varphi_k^0)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^0 t} \sin(m\pi x') v(t,x') dx' dt = -e^{-\lambda_{k,m} T} \left\langle y_0, \phi_{k,m}^0 \right\rangle, \\ (\varphi_k^c)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^c t} \sin(m\pi x') v(t,x') dx' dt = -e^{-\lambda_{k,m} T} \left\langle y_0, \phi_{k,m}^c \right\rangle. \end{cases}$$

The multi-D biorthogonal family

$$\begin{cases} (\varphi_k^0)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^0 t} \sin(m\pi x') v(t,x') dx' dt = -e^{-\lambda_{k,m} T} \left\langle y_0, \phi_{k,m}^0 \right\rangle, \\ (\varphi_k^c)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^0 t} \sin(m\pi x') v(t,x') dx' dt = -e^{-\lambda_{k,m} T} \left\langle y_0, \phi_{k,m}^c \right\rangle. \end{cases}$$

• Look for a biorthogonal family in $L^2((0,T)\times(a,b))$ to $\{F_{k,m}^p:p\in\{0,c\},k,m\geq 1\}$ with

$$F_{k,m}^p: (t,x') \mapsto e^{-\lambda_{k,m}^p t} \sin(m\pi x').$$

The multi-D biorthogonal family

$$\begin{cases} (\varphi_k^0)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^0 t} \sin(m\pi x') v(t,x') dx' dt = -e^{-\lambda_{k,m} T} \left\langle y_0, \phi_{k,m}^0 \right\rangle, \\ (\varphi_k^c)'(0) \int_0^T \int_a^b e^{-\lambda_{k,m}^c t} \sin(m\pi x') v(t,x') dx' dt = -e^{-\lambda_{k,m} T} \left\langle y_0, \phi_{k,m}^c \right\rangle. \end{cases}$$

• Look for a biorthogonal family in $L^2((0,T)\times(a,b))$ to $\{F_{k,m}^p:p\in\{0,c\},k,m\geq 1\}$ with

$$F_{k,m}^p: (t,x') \mapsto e^{-\lambda_{k,m}^p t} \sin(m\pi x').$$

F. Ammar Khodja, A. Benabdallah, M. González Burgos, M. M. & L. de Teresa ($\geq 2025)$

Construction of such biorthogonal family for any T>0 with estimate

$$\|Q_{k,m}^p\|_{L^2((0,T)\times(a,b))} \leq C e^{C/T} e^{C\sqrt{\lambda_{k,m}^p}} \frac{1}{|\lambda_k^c - k^2\pi^2|}.$$

 \implies Same minimal null control time as in the 1D setting.

First step: a nice biorthogonal family in $L^2((0,T)\times(0,1))$

• As $\lambda_{k,m}^p = \lambda_k^p + m^2 \pi^2$, for any fixed $m \ge 1$, biorthogonal family $\left(q_{k,m}^p\right)$ in $L^2(0,T;\mathbb{R})$ to

$$t \in (0,T) \mapsto e^{-\lambda_{k,m}^p t}, \quad k \ge 1,$$

with estimate

$$\|q_{k,m}^p\| \leq Ce^{C/T}e^{C\sqrt{\lambda_{k,m}}}\frac{1}{|\lambda_k^c-k^2\pi^2|}, \qquad \forall k,m \geq 1, p \in \{0,c\}.$$

First step: a nice biorthogonal family in $L^2((0,T)\times(0,1))$

• As $\lambda_{k,m}^p = \lambda_k^p + m^2 \pi^2$, for any fixed $m \ge 1$, biorthogonal family $\left(q_{k,m}^p\right)$ in $L^2(0,T;\mathbb{R})$ to

$$t \in (0,T) \mapsto e^{-\lambda_{k,m}^p t}, \quad k \ge 1,$$

with estimate

$$\|q_{k,m}^p\| \leq Ce^{C/T}e^{C\sqrt{\lambda_{k,m}}}\frac{1}{|\lambda_k^c - k^2\pi^2|}, \qquad \forall k,m \geq 1, p \in \{0,c\}.$$

• Orthogonality in $L^2((0,1);\mathbb{R})$ of $(\sin(m\pi))_{m\geq 1}$ implies that

$$Q_{k,m}^p:(t,x')\mapsto q_{k,m}^p(t)\sin(m\pi x')$$

forms a biorthogonal family in $L^2((0,T)\times(0,1))$ to

$$F_{k,m}^p:(t,x')\mapsto e^{-\lambda_{k,m}^pt}\sin(m\pi x'), \qquad \forall k,m\geq 1$$

with estimate

$$||Q_{k,m}^p||_{L^2((0,T)\times(0,1))} \le Ce^{C/T}e^{C\sqrt{\lambda_{k,m}^p}}\frac{1}{|\lambda_c^c - k^2\pi^2|}, \qquad \forall k, m \ge 1, p \in \{0,c\}.$$

Same construction as F. Boyer & G. Olive (2023).

Second step: the restriction operator from (0,1) to (a,b)

• Prove that the restriction in space operator

$$\begin{split} \mathcal{R}: \overline{\operatorname{Span}\{F_{k,m}^p\}}^{L^2_\rho((0,T)\times(0,1))} &\to \overline{\operatorname{Span}\{F_{k,m}^p\}}^{L^2((0,T)\times(a,b))} \\ F &\mapsto F_{|(a,b)} \end{split}$$

is an isomorphism.

Second step: the restriction operator from (0,1) to (a,b)

Prove that the restriction in space operator

$$\begin{split} \mathcal{R}: \overline{\operatorname{Span}\{F_{k,m}^p\}}^{L^2_\rho((0,T)\times(0,1))} &\to \overline{\operatorname{Span}\{F_{k,m}^p\}}^{L^2((0,T)\times(a,b))} \\ F &\mapsto F_{|(a,b)} \end{split}$$

is an isomorphism.

Follows from

$$\int_0^T \int_0^1 \rho(t) \left| P_N(t, x') \right|^2 \mathrm{d}x' \mathrm{d}t \le C \int_0^T \int_a^b \left| P_N(t, x') \right|^2 \mathrm{d}x' \mathrm{d}t$$

for any

$$P_N(t,x') = \sum_{k=1}^{N} \sum_{m=1}^{N} a_{k,m}^0 e^{-\lambda_{k,m}^0 t} \sin(m\pi x') + a_{k,m}^c e^{-\lambda_{k,m}^c t} \sin(m\pi x').$$

$$P_N(t,x') = \sum_{k=1}^{N} \sum_{m=1}^{N} \left(a_{k,m}^0 e^{-\lambda_{k,m}^0 t} + a_{k,m}^c e^{-\lambda_{k,m}^c t} \right) \sin(m\pi x')$$

• 1D spectral inequality in the variable x'

$$\int_0^1 \left| \sum_{m \le \lambda} A_m \sin(m\pi x') \right|^2 dx' \le e^{\beta \lambda} \int_a^b \left| \sum_{m \le \lambda} A_m \sin(m\pi x') \right|^2 dx'$$

with a frequency cut depending on t (inspired by L. Miller (2010)).

$$P_N(t,x') = \sum_{k=1}^{N} \sum_{m=1}^{N} \left(a_{k,m}^0 e^{-\lambda_{k,m}^0 t} + a_{k,m}^c e^{-\lambda_{k,m}^c t} \right) \sin(m\pi x')$$

• 1D spectral inequality in the variable x'

$$\int_0^1 \left| \sum_{m \le \lambda} A_m \sin(m\pi x') \right|^2 dx' \le e^{\beta \lambda} \int_a^b \left| \sum_{m \le \lambda} A_m \sin(m\pi x') \right|^2 dx'$$

with a frequency cut depending on t (inspired by L. Miller (2010)).

• Let $t \in (0,T)$ and $m \ge 1$ be fixed. Let $q_{k,m}^t$ be the solution of the block moment problem

$$\begin{cases} \int_0^T q_{k,m}^t(s)e^{-\lambda_{k,m}^0s}\mathrm{d}s = e^{-\lambda_{k,m}^0t}, & \int_0^T q_{k,m}^t(s)e^{-\lambda_{k,m}^cs}\mathrm{d}s = e^{-\lambda_{k,m}^ct}, \\ \int_0^T q_{k,m}^t(s)e^{-\lambda_{j,m}^ps}\mathrm{d}s = 0, & \forall j \neq k, \ p \in \{0,c\}. \end{cases}$$

$$P_N(t,x') = \sum_{k=1}^{N} \sum_{m=1}^{N} \left(a_{k,m}^0 e^{-\lambda_{k,m}^0 t} + a_{k,m}^c e^{-\lambda_{k,m}^c t} \right) \sin(m\pi x')$$

• 1D spectral inequality in the variable x'

$$\int_0^1 \left| \sum_{m \le \lambda} A_m \sin(m\pi x') \right|^2 dx' \le e^{\beta \lambda} \int_a^b \left| \sum_{m \le \lambda} A_m \sin(m\pi x') \right|^2 dx'$$

with a frequency cut depending on t (inspired by L. Miller (2010)).

• Let $t \in (0,T)$ and $m \ge 1$ be fixed. Let $q_{k,m}^t$ be the solution of the block moment problem

$$\begin{cases} \int_0^T q_{k,m}^t(s) e^{-\lambda_{k,m}^0 s} \mathrm{d}s = e^{-\lambda_{k,m}^0 t}, & \int_0^T q_{k,m}^t(s) e^{-\lambda_{k,m}^c s} \mathrm{d}s = e^{-\lambda_{k,m}^c t}, \\ \int_0^T q_{k,m}^t(s) e^{-\lambda_{j,m}^p s} \mathrm{d}s = 0, & \forall j \neq k, \ p \in \{0,c\}. \end{cases}$$

Then,

$$\langle q_{k,m}^t \sin(m\pi \cdot), P_N \rangle_{L^2((0,T)\times(0,1))} = a_{k,m}^0 e^{-\lambda_{k,m}^0 t} + a_{k,m}^c e^{-\lambda_{k,m}^c t}$$

and

$$\|q_{k,m}^t\|_{L^2(0,T;\mathbb{R})} \le Ce^{C/T}e^{C\sqrt{\lambda_{k,m}^0}}e^{-\lambda_{k,m}^0t}$$

Another example

Simultaneous controllability on $\Omega = (0,1) \times (0,1)$.

$$\begin{cases} \partial_t y + \begin{pmatrix} -\Delta & 0 \\ 0 & -\Delta + c(x) \end{pmatrix} y = \begin{pmatrix} \mathbf{1}_{\omega \times (a,b)} u \\ \mathbf{1}_{\omega \times (a,b)} u \end{pmatrix}, \\ y_{|\partial\Omega} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \end{cases}$$

The function c satisfies $\partial_{x'}c = 0$.

F. Ammar Khodja, A. Benabdallah, M. González Burgos, M. M. & L. de Teresa (≥ 2025)

Construction of a suitable biorthogonal family with estimate

$$||Q_{k,m}^p||_{L^2((0,T)\times\omega\times(a,b))}^2 \le Ce^{C/T}e^{C\sqrt{\lambda_{k,m}^p}} \frac{1}{\det \mathcal{G}_k + |\lambda_k^c - k^2\pi^2|^2}$$

where

$$\mathcal{G}_k = \operatorname{Gram}_{L^2(\omega)} \left(\varphi_k^0, \varphi_k^c \right).$$

 \Longrightarrow Minimal null control time if both eigenvalues and eigenvectors on ω condensate.

A general result

F. Ammar Khodja, A. Benabdallah, M. González Burgos, M. M. & L. de Teresa (≥ 2025)

- Cylindrical geometry and tensorized operators
- On the direction associated with λ_k : nice 1D assumptions (to solve block moment problems) on the eigenvalues.
- On the direction associated with μ_m : asymptotic of μ_m + Riesz-basis property for the eigenvectors + spectral inequality for the eigenvectors.
- \Longrightarrow construction and estimate of a space-time biorthogonal family for any time T>0.

Conclusion and perspectives

Conclusion:

The block resolution of moment problems

- gives sharper results than the use of biorthogonal families ;
- allows to characterize the minimal null control time (of a given initial condition) for many parabolic-type one dimensional control problems for any admissible control operators;
- is the parabolic equivalent of generalized Ingham-type results ;
- is a key tool to construct and estimate space-time biorthogonal families in higher dimension for tensorized problems.

Perspectives:

 The problem for non tensorized geometries or operators remains completely open...

Conclusion and perspectives

Conclusion:

The block resolution of moment problems

- gives sharper results than the use of biorthogonal families ;
- allows to characterize the minimal null control time (of a given initial condition) for many parabolic-type one dimensional control problems for any admissible control operators;
- is the parabolic equivalent of generalized Ingham-type results ;
- is a key tool to construct and estimate space-time biorthogonal families in higher dimension for tensorized problems.

Perspectives:

 The problem for non tensorized geometries or operators remains completely open...

Thank you for your attention and feliz cumpleaños