The minimal control time for the exact controllability by internal controls of 1D linear hyperbolic systems

Guillaume Olive

(joint work with Long Hu)

Workshop on PDEs and Control 2025

(A conference to celebrate the 60th birthday of Francisco Guillén-González & Manuel González-Burgos)

Seville, September 3-5, 2025

Outline of the talk

I. Framework

II. Boundary controllability: brief review

III. Proof of the main result

System description

Equations

$$\frac{\partial y}{\partial t}(t,x) + \Lambda(x)\frac{\partial y}{\partial x}(t,x) = \underline{M(x)}y(t,x) + \underline{u(t,x)}, \quad (t,x) \in R_T,$$

- \blacksquare $R_T = (0, T) \times (0, 1)$ and $y : R_T \to \mathbb{R}^n$ is the state.
- $\Lambda \in C^{0,1}([0,1])^{n \times n}$ is diagonal, with

$$\lambda_1 < \cdots < \lambda_m < 0 < \lambda_{m+1} < \cdots < \lambda_{m+p}.$$

- $M \in L^{\infty}(0,1)^{n \times n}$ is the internal coupling matrix.
- $u: R_T \to \mathbb{R}^n$ is the **control**. Constraint : $\operatorname{supp} u \subset (0,T) \times \omega$ with $\omega \subset (0,1)$ open, fixed.

System description

Equations

$$\frac{\partial y}{\partial t}(t,x) + \Lambda(x)\frac{\partial y}{\partial x}(t,x) = \underline{M(x)}y(t,x) + \underline{u(t,x)}, \quad (t,x) \in R_T,$$

- \blacksquare $R_T = (0, T) \times (0, 1)$ and $y : R_T \to \mathbb{R}^n$ is the state.
- $\Lambda \in C^{0,1}([0,1])^{n \times n}$ is diagonal, with

$$\lambda_1 < \cdots < \lambda_m < 0 < \lambda_{m+1} < \cdots < \lambda_{m+p}$$

- $M \in L^{\infty}(0,1)^{n \times n}$ is the internal coupling matrix.
- $u: R_T \to \mathbb{R}^n$ is the **control**. Constraint : supp $u \subset (0,T) \times \omega$ with $\omega \subset (0,1)$ open, fixed.

Initial condition

$$y(0,x)=y^0(x).$$

System description

Equations

$$\frac{\partial y}{\partial t}(t,x) + \Lambda(x)\frac{\partial y}{\partial x}(t,x) = \underline{M(x)}y(t,x) + \underline{u(t,x)}, \quad (t,x) \in R_T,$$

- lacksquare $R_T=(0,T) imes(0,1)$ and $y:R_T o\mathbb{R}^n$ is the state.
- $\Lambda \in C^{0,1}([0,1])^{n \times n}$ is diagonal, with

$$\lambda_1 < \cdots < \lambda_m < 0 < \lambda_{m+1} < \cdots < \lambda_{m+p}$$

- $M \in L^{\infty}(0,1)^{n \times n}$ is the internal coupling matrix.
- $u: R_T \to \mathbb{R}^n$ is the **control**. Constraint : $\operatorname{supp} u \subset (0,T) \times \omega$ with $\omega \subset (0,1)$ open, fixed.

Initial condition

$$y(0,x)=y^0(x).$$

Denoting by
$$y = \begin{pmatrix} y_- \\ y_+ \end{pmatrix} \in \mathbb{R}^{m+p}$$
,

Boundary conditions

$$y_{-}(t,1) = \frac{Q_1}{2}y_{+}(t,1), \quad y_{+}(t,0) = \frac{Q_0}{2}y_{-}(t,0).$$

 $Q_1 \in \mathbb{R}^{m \times p}$ and $Q_0 \in \mathbb{R}^{p \times m}$ are the boundary coupling matrices.

 $\mbox{Well-posedness}: \forall y^0 \in L^2, \ \forall u \in L^2, \quad \exists ! y \in C^0([0,T]; L^2(0,1)^n).$

Well-posedness : $\forall y^0 \in L^2$, $\forall u \in L^2$, $\exists ! y \in C^0([0, T]; L^2(0, 1)^n)$.

Exact Controllability (EC) in time T:

$$\forall y^0, y^1 \in L^2, \quad \exists u \in L^2, \qquad y(T, \cdot) = y^1.$$

 $\text{Well-posedness}: \forall y^0 \in L^2, \ \forall u \in L^2, \quad \exists ! y \in C^0([0,T]; \textbf{$L^2(0,1)^n$}).$

Exact Controllability (EC) in time T:

$$\forall y^0, y^1 \in L^2, \quad \exists u \in L^2, \qquad y(T, \cdot) = y^1.$$

 $\text{Remark}: \textbf{(EC)} \text{ in time } \mathcal{T}_1 \quad \Longrightarrow \quad \textbf{(EC)} \text{ in time } \mathcal{T}_2 \geq \mathcal{T}_1.$

Definition

Minimal time for (EC):

$$T_{\inf} = \inf \{ T > 0, \quad \text{System is (EC) in time } T \}, \qquad (\in [0, +\infty]).$$

 $\mbox{Well-posedness}: \forall y^0 \in L^2, \ \forall u \in L^2, \quad \exists ! y \in C^0([0,T]; \mbox{$L^2(0,1)^n$}).$

Exact Controllability (EC) in time T:

$$\forall y^0, y^1 \in L^2, \quad \exists u \in L^2, \qquad y(T, \cdot) = y^1.$$

Remark : **(EC)** in time $T_1 \implies \text{(EC)}$ in time $T_2 \geq T_1$.

Definition

Minimal time for (EC):

$$T_{\inf} = \inf \{ T > 0, \quad \text{System is (EC) in time } T \}, \qquad (\in [0, +\infty]).$$

- \blacksquare $T > T_{\rm inf} \implies$ System is **(EC)** in time T.

Well-posedness: $\forall y^0 \in L^2$, $\forall u \in L^2$, $\exists ! y \in C^0([0, T]; L^2(0, 1)^n)$.

Exact Controllability (EC) in time T:

$$\forall y^0, y^1 \in L^2, \quad \exists u \in L^2, \qquad y(T, \cdot) = y^1.$$

Remark : **(EC)** in time $T_1 \implies \text{(EC)}$ in time $T_2 \geq T_1$.

Definition

Minimal time for (EC):

$$T_{\inf} = \inf \left\{ T > 0, \quad \text{System is (EC) in time } T \right\}, \qquad (\in [0, +\infty]).$$

- \blacksquare $T > T_{inf} \implies$ System is **(EC)** in time T.

Goal

$$T_{\text{inf}} = ???$$
 (M, Q_1 , Q_0 are fixed).

Literature

Very few results, and only when $\omega = (a, b)$ is an **interval**:

Theorem ([Zhuang, Li & Rao (2016), pcps] – also for quaslinear systems, [Li, Lu & Qu (2024), cocv])

Assume Q_1, Q_0 are invertible. Then, **(EC)** in any time $T > (T_m + T_{m+1}) \times \max\{a, 1-b\}$.

a. See after for the definition of T_k .

Literature

Very few results, and only when $\omega = (a, b)$ is an **interval**:

Theorem ([Zhuang, Li & Rao (2016), pcps] – also for quaslinear systems, [Li, Lu & Qu (2024), cocv])

Assume Q_1, Q_0 are invertible. Then, **(EC)** in any time $T > (T_m + T_{m+1}) \times \max\{a, 1-b\}$. ^a

a. See after for the definition of T_k .

Related result :

Theorem ([Alabau-Boussouira, Coron & Olive (2017), sicon])

Consider 2×2 underactuated quasilinear system with **periodic boundary conditions**:

$$\begin{cases} \frac{\partial y}{\partial t} + \Lambda(y) \frac{\partial y}{\partial x} = M(y) + \begin{pmatrix} u(t, x) \\ 0 \end{pmatrix}, \\ y(t, 0) = y(t, 1), \\ y(0, x) = y^{0}(x). \end{cases}$$

If $(\partial M_2/\partial y_1)(0,0) \neq 0$, then **(EC)** in any time $T > \max\{T_1,T_2\} \times (1-|b-a|)$ (locally near y=0, for regular enough y^0 , etc.).

Main Result

Theorem ([Hu & Olive (2024), cocv])

- $T_{\mathrm{inf}}<+\infty \implies Q_1,Q_0$ are invertible (in part., m=p).
- If Q_1 , Q_0 are invertible,

$$T_{\inf} = \max_{I \in \mathcal{C}} T_{\inf}^{bc}(I),$$

where:

- $ightharpoonup C = \{ connected components of \overline{\omega}^c \}.$
- $ightharpoonup T_{inf}^{bc}(I) = minimal control time, on the interval I, by boundary controls (explicit! See after).$

$$(T_{\rm inf}=0 \ if \overline{\omega}=[0,1]).$$

Main Result

Theorem ([Hu & Olive (2024), cocv])

- $T_{\rm inf} < +\infty \implies Q_1, Q_0$ are invertible (in part., m=p).
- If Q_1 , Q_0 are invertible,

$$T_{\inf} = \max_{I \in \mathcal{C}} T_{\inf}^{bc}(I),$$

where:

- $ightharpoonup \mathcal{C} = \{ connected components of \overline{\omega}^c \}.$
- $ightharpoonup T_{\mathrm{inf}}^{bc}(I) = minimal control time, on the interval I, by boundary controls (explicit! See after).$

 $(T_{\mathrm{inf}}=0 \text{ if } \overline{\omega}=[0,1]).$

 Strategy of proof: inspired by [Ammar-Khodja, Benabdallah, González-Burgos & de Teresa (2011), MCRF] on the implication

"boundary controllability \improx internal controllability"

for the heat equation (see also [Alabau-Boussouira, Coron & Olive (2017), sicon]).

Main Result

Theorem ([Hu & Olive (2024), cocv])

- $T_{\rm inf} < +\infty \implies Q_1, Q_0$ are invertible (in part., m=p).
- If Q_1 , Q_0 are invertible,

$$T_{\inf} = \max_{I \in \mathcal{C}} T_{\inf}^{bc}(I),$$

where:

- $ightharpoonup \mathcal{C} = \{ connected components of \overline{\omega}^c \}.$
- $T_{\rm inf}^{bc}(I)$ = minimal control time, on the interval I, by boundary controls (explicit! See after). $(T_{\rm inf}=0 \ if \ \overline{\omega}=[0,1])$.
- Strategy of proof: inspired by [Ammar-Khodja, Benabdallah, González-Burgos & de Teresa (2011), MCRF] on the implication

"boundary controllability ⇒ internal controllability"

for the heat equation (see also [Alabau-Boussouira, Coron & Olive (2017), sicon]).

■ Related results for 1D parabolic systems : [Boyer & Olive (2014), MCRF] and [Boyer & Morancey (2025), AMBP].

Examples

We assume that Q_1 , Q_0 are invertible.

$$\omega = (a, b) \implies T_{\inf} = \max \left\{ T_{\inf}^{bc}(0, a), T_{\inf}^{bc}(b, 1) \right\}.$$

$$\begin{cases} \frac{\partial y}{\partial t}(t,x) + \Lambda(x)\frac{\partial y}{\partial x}(t,x) = \mathbf{M}(x)y(t,x), \\ y_{-}(t,a) = v_{-}(t) \quad y_{+}(t,0) = \mathbf{Q}_{0}y_{-}(t,0), \\ y(0,x) = y^{0}(x). \end{cases} \begin{cases} \frac{\partial y}{\partial t}(t,x) + \Lambda(x)\frac{\partial y}{\partial x}(t,x) = \mathbf{M}(x)y(t,x), \\ y_{-}(t,1) = \mathbf{Q}_{1}y_{+}(t,1) \quad y_{+}(t,b) = v_{+}(t), \\ y(0,x) = y^{0}(x). \end{cases}$$

Examples

We assume that Q_1 , Q_0 are invertible.

$$\omega = (a,b) \implies T_{\inf} = \max \left\{ T_{\inf}^{bc}(0,a), T_{\inf}^{bc}(b,1) \right\}.$$

$$\begin{cases} \frac{\partial y}{\partial t}(t,x) + \Lambda(x)\frac{\partial y}{\partial x}(t,x) = \mathbf{M}(x)y(t,x), \\ y_{-}(t,a) = v_{-}(t) \quad y_{+}(t,0) = \mathbf{Q}_{0}y_{-}(t,0), \\ y(0,x) = y^{0}(x). \end{cases} \begin{cases} \frac{\partial y}{\partial t}(t,x) + \Lambda(x)\frac{\partial y}{\partial x}(t,x) = \mathbf{M}(x)y(t,x), \\ y_{-}(t,1) = \mathbf{Q}_{1}y_{+}(t,1) \quad y_{+}(t,b) = v_{+}(t), \\ y(0,x) = y^{0}(x). \end{cases}$$

$$\omega = (0, c) \cup (d, 1) \implies T_{\inf} = T_{\inf}^{bc}(c, d).$$

$$\begin{cases} \frac{\partial y}{\partial t}(t, x) + \Lambda(x) \frac{\partial y}{\partial x}(t, x) = M(x)y(t, x), \\ y_{-}(t, d) = v_{-}(t) & y_{+}(t, c) = v_{+}(t), \\ y(0, x) = y^{0}(x) \end{cases}$$

We need to know T_{inf}^{bc} for **one-sided** and **two-sided** controllability.

Outline of the talk

I Framework

II. Boundary controllability: brief review

III. Proof of the main result

Control of a single equation

The transport equation :

$$\begin{cases} \frac{\partial y}{\partial t} + \lambda(x) \frac{\partial y}{\partial x} = 0, \\ y(t, 1) = v(t) \text{ if } \lambda < 0, \quad (y(t, 0) = v(t) \text{ if } \lambda > 0), \\ y(0, x) = y^{0}(x). \end{cases}$$
 (TE)

We have

$$T_{\rm inf}^{bc} = \int_0^1 \frac{1}{|\lambda(\xi)|} \, d\xi.$$

Control of a single equation

The transport equation :

$$\begin{cases} \frac{\partial y}{\partial t} + \lambda(x) \frac{\partial y}{\partial x} = 0, \\ y(t, 1) = v(t) \text{ if } \lambda < 0, \quad (y(t, 0) = v(t) \text{ if } \lambda > 0), \\ y(0, x) = y^{0}(x). \end{cases}$$
 (TE)

We have

$$T_{\rm inf}^{bc} = \int_0^1 \frac{1}{|\lambda(\xi)|} \, d\xi.$$

Coming back to systems,

Definition

 $T_k = T_{\rm inf}^{bc}$ of (TE) with speed λ_k .

$$\lambda_1 < \cdots < \lambda_m < 0 < \lambda_{m+1} < \cdots < \lambda_{m+p}$$

implies
$$T_1 < \ldots < T_m$$
, $T_{m+1} > \ldots > T_{m+p}$.

Two-sided boundary controllability

We consider

$$\begin{cases} \frac{\partial y}{\partial t}(t,x) + \Lambda(x) \frac{\partial y}{\partial x}(t,x) = M(x)y(t,x), \\ y_{-}(t,1) = v_{-}(t) \quad y_{+}(t,0) = v_{+}(t), \\ y(0,x) = y^{0}(x). \end{cases}$$

Theorem

$$T_{\inf}^{bc} = \max\{T_m, \quad T_{m+1}\}.$$

 $\label{eq:Upper bound loss} \begin{array}{l} \mbox{Upper bound} \leq : \mbox{[Li & Rao (2003), sicon] ("Constructive method")}. \\ \mbox{Lower bound} \geq : \mbox{[Hu & Olive (2021), cocv] (Backstepping method)}. \end{array}$

One-sided boundary controllability

We consider

$$\begin{cases} \frac{\partial y}{\partial t}(t,x) + \Lambda(x) \frac{\partial y}{\partial x}(t,x) = \frac{M(x)y(t,x)}{y}, \\ y_{-}(t,1) = v(t) \quad y_{+}(t,0) = \frac{Q}{y}(t,0), \\ y(0,x) = y^{0}(x). \end{cases}$$

Theorem ([Hu & Olive (2021), JMPA])

- $\blacksquare \ \, If {\rm rank} \, Q = p,$

$$T_{\inf}^{bc} = \max_{1 \le k \le p} \{ T_{m+k} + T_{c_k}, T_m \},$$

where c_k are indices from the LCU-decomposition of Q.

Proof by compactness-uniqueness (T_{inf}^{bc} is the same as for M=0).

What are the c_k ?

Definition ([Hu & Olive (2022), JDE])

Q is in canonical form if there is at most one nonzero entry on each row and column, and =1.

We denote by (r_k, c_k) , $(1 \le k \le \rho)$ the corresponding indices, with $r_1 < \cdots < r_\rho$.

Examples:

$$\begin{pmatrix} 0 & \boxed{1} & 0 \\ 0 & 0 & \boxed{1} \\ 0 & 0 & 0 \\ \boxed{1} & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & \boxed{1} & 0 & 0 \\ 0 & 0 & \boxed{1} & 0 \\ \boxed{1} & 0 & 0 & 0 \end{pmatrix}.$$

What are the c_k ?

Definition ([Hu & Olive (2022), JDE])

Q is in canonical form if there is at most one nonzero entry on each row and column, and =1.

We denote by (r_k, c_k) , $(1 \le k \le \rho)$ the corresponding indices, with $r_1 < \cdots < r_\rho$.

Examples:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

The Gaussian elimination gives :

Proposition

There exist $L \in \mathbb{R}^{p \times p}$ (lower triang., $\operatorname{diag} L = 1$) and $U \in \mathbb{R}^{m \times m}$ (upper triang., invert.) :

 $LQU := Q^c$ is in canonical form.

Moreover, Q^c is unique. We set $(r_k, c_k)(Q) = (r_k, c_k)(Q^c)$.

See also [Dopico, Johnson & Molera (2006), LAA].

Remark : rank Q = p implies $r_k = k$.

Outline of the talk

I. Framework

II. Boundary controllability: brief review

III. Proof of the main result

Why should Q_1 , Q_0 be invertible?

The transport equation :

$$\begin{cases} \frac{\partial y}{\partial t} + \lambda(x) \frac{\partial y}{\partial x} = u(t, x), \\ y(t, 1) = 0 \text{ if } \lambda < 0, \quad (y(t, 0) = 0 \text{ if } \lambda > 0), \\ y(0, x) = y^{0}(x), \end{cases}$$
 (TE)

is never (EC).

Remark: (TE) is approximately/null controllable in any time!

In that case, the system is (EC) in any time ${\cal T}>0$.

In that case, the system is **(EC)** in any time T > 0.

The proof is easy and well-known : we define

$$\bar{y} = \eta(t)y^f + (1 - \eta(t))y^b,$$
 (1)

where:

In that case, the system is **(EC)** in any time T > 0.

The proof is easy and well-known : we define

$$\bar{y} = \eta(t)y^f + (1 - \eta(t))y^b,$$
 (1)

where:

lacksquare $\eta \in C^1$ is a time cut-off function such that

$$\eta(0)=1,\quad \eta(T)=0,$$

In that case, the system is **(EC)** in any time T > 0.

The proof is easy and well-known : we define

$$\bar{y} = \eta(t)y^f + (1 - \eta(t))y^b,$$
 (1)

where:

 $\eta \in C^1$ is a time cut-off function such that

$$\eta(0)=1,\quad \eta(T)=0,$$

 \bigvee y^f/y^b is the solution to the forward/backward problem (without control)

$$\begin{cases} \frac{\partial y^f}{\partial t}(t,x) + \Lambda(x) \frac{\partial y^f}{\partial x}(t,x) = M(x)y^f(t,x), \\ y_-^f(t,1) = \frac{Q_1}{Q_1}y_+^f(t,1), \quad y_+^f(t,0) = \frac{Q_0}{Q_0}y_-^f(t,0), \\ y_-^f(0,x) = y^0(x), \end{cases} \\ \begin{cases} \frac{\partial y^b}{\partial t}(t,x) + \Lambda(x) \frac{\partial y^b}{\partial x}(t,x) = M(x)y^b(t,x), \\ y_-^b(t,0) = \frac{Q_0^{-1}}{Q_0^{-1}}y_+^b(t,0), \quad y_+^b(t,1) = \frac{Q_1^{-1}}{Q_1^{-1}}y_-^b(t,1), \\ y_-^b(T,x) = y^1(x). \end{cases}$$

In that case, the system is **(EC)** in any time T > 0.

The proof is easy and well-known : we define

$$\bar{y} = \eta(t)y^f + (1 - \eta(t))y^b,$$
 (1)

where:

 $\eta \in C^1$ is a time cut-off function such that

$$\eta(0)=1, \quad \eta(T)=0,$$

 \bigvee y^f/y^b is the solution to the forward/backward problem (without control)

$$\begin{cases} \frac{\partial y^f}{\partial t}(t,x) + \Lambda(x)\frac{\partial y^f}{\partial x}(t,x) = M(x)y^f(t,x), \\ y_-^f(t,1) = \frac{Q_1}{Q_1}y_+^f(t,1), \quad y_+^f(t,0) = \frac{Q_0}{Q_0}y_-^f(t,0), \\ y_-^f(0,x) = y^0(x), \end{cases} \\ \begin{cases} \frac{\partial y^b}{\partial t}(t,x) + \Lambda(x)\frac{\partial y^b}{\partial x}(t,x) = M(x)y^b(t,x), \\ y_-^b(t,0) = \frac{Q_0}{Q_0}y_+^b(t,0), \quad y_+^b(t,1) = \frac{Q_1}{Q_1}y_-^b(t,1), \\ y_-^b(T,x) = y^1(x). \end{cases}$$

Then, we simply take as control

$$\bar{u} = \frac{\partial \bar{y}}{\partial t} + \Lambda(x) \frac{\partial \bar{y}}{\partial x} - M(x) \bar{y}$$
$$= \eta'(t) (y^f - y^b).$$

Let $T > T_{\inf}^{bc}(I)$ for all $I \in \mathcal{C}$. Let us prove that the system is **(EC)**.

Let $T > T_{\inf}^{bc}(I)$ for all $I \in \mathcal{C}$. Let us prove that the system is **(EC)**.

Lemma

There exists $\omega_0 \subset\subset \omega$, very close to ω (thus, **not small**), such that :

- $\overline{\omega_0}^c = I_1 \cup I_2 \cup \ldots \cup I_N$ (disjoint open intervals).
- $extstyle T > T_{ ext{inf}}^{bc}(I_k)$ for all k.

Let $T > T_{\inf}^{bc}(I)$ for all $I \in \mathcal{C}$. Let us prove that the system is **(EC)**.

Lemma

There exists $\omega_0 \subset\subset \omega$, very close to ω (thus, **not small**), such that :

- $\overline{\omega_0}^c = I_1 \cup I_2 \cup \ldots \cup I_N$ (disjoint open intervals).
- $T > T_{inf}^{bc}(I_k)$ for all k.

Then, as in [Ammar-Khodja, Benabdallah, González-Burgos & de Teresa (2011), MCRF],

$$y = \xi(x)y^* + (1 - \xi(x))\bar{y},$$

where:

Let $T > T_{\inf}^{bc}(I)$ for all $I \in \mathcal{C}$. Let us prove that the system is **(EC)**.

Lemma

There exists $\omega_0 \subset\subset \omega$, very close to ω (thus, **not small**), such that :

- $\overline{\omega_0}^c = I_1 \cup I_2 \cup \ldots \cup I_N$ (disjoint open intervals).
- $T > T_{inf}^{bc}(I_k)$ for all k.

Then, as in [Ammar-Khodja, Benabdallah, González-Burgos & de Teresa (2011), MCRF],

$$y = \xi(x)y^* + (1 - \xi(x))\bar{y},$$

where:

lacksquare $\xi \in C^1$ is a space cut-off function such that

$$\xi(x) = \begin{cases} 1 & \text{if } x \notin \overline{\omega_1}, \\ 0 & \text{if } x \in \overline{\omega_0}, \end{cases} \quad \omega_0 \subset\subset \omega_1 \subset\subset \omega.$$

Let $T > T_{\inf}^{bc}(I)$ for all $I \in \mathcal{C}$. Let us prove that the system is **(EC)**.

Lemma

There exists $\omega_0 \subset\subset \omega$, very close to ω (thus, **not small**), such that :

- $\overline{\omega_0}^c = I_1 \cup I_2 \cup \ldots \cup I_N$ (disjoint open intervals).
- $T > T_{inf}^{bc}(I_k)$ for all k.

Then, as in [Ammar-Khodja, Benabdallah, González-Burgos & de Teresa (2011), MCRF],

$$y = \xi(x)y^* + (1 - \xi(x))\bar{y},$$

where:

 $\xi \in C^1$ is a space cut-off function such that

$$\xi(x) = \begin{cases} 1 & \text{if } x \notin \overline{\omega_1}, \\ 0 & \text{if } x \in \overline{\omega_0}, \end{cases} \quad \omega_0 \subset\subset \omega_1 \subset\subset \omega.$$

■ In each $[0, T] \times I_k : y^*$ is the controlled solution from the boundary.

Let $T > T_{\inf}^{bc}(I)$ for all $I \in \mathcal{C}$. Let us prove that the system is **(EC)**.

Lemma

There exists $\omega_0 \subset\subset \omega$, very close to ω (thus, **not small**), such that :

- $\overline{\omega_0}^c = I_1 \cup I_2 \cup \ldots \cup I_N$ (disjoint open intervals).
- $T > T_{inf}^{bc}(I_k)$ for all k.

Then, as in [Ammar-Khodja, Benabdallah, González-Burgos & de Teresa (2011), MCRF],

$$y = \xi(x)y^* + (1 - \xi(x))\bar{y},$$

where:

ullet $\xi \in C^1$ is a space cut-off function such that

$$\xi(x) = \begin{cases} 1 & \text{if } x \notin \overline{\omega_1}, \\ 0 & \text{if } x \in \overline{\omega_0}, \end{cases} \quad \omega_0 \subset\subset \omega_1 \subset\subset \omega.$$

In each $[0, T] \times I_k : y^*$ is the controlled solution from the boundary.

The conclusion is as before:

$$u = \frac{\partial y}{\partial t} + \Lambda(x) \frac{\partial y}{\partial x} - M(x)y$$

= $\xi'(x)\Lambda(x)(y^* - \bar{y}) + (1 - \xi(x))\bar{u}$, (supp $u \subset (0, T) \times \overline{\omega_1}$).

Open problems

■ Underactuated systems: 1

$$\frac{\partial y}{\partial t}(t,x) + \Lambda(x)\frac{\partial y}{\partial x}(t,x) = M(x)y(t,x) + Ju(t,x), \quad \text{rank } J < n?$$

■ Nonlocal boundary conditions: 1

$$\begin{pmatrix} y_-(t,1) \\ y_+(t,0) \end{pmatrix} = Q \begin{pmatrix} y_-(t,0) \\ y_+(t,1) \end{pmatrix}?$$

- supp $u_k \subset (0, T) \times \omega_k$ with ω_k disjoints?
- Null controllability?
- Moving control domain $\omega = \omega(t)$?
- Quasi-linear systems? 12

^{1.} Some results in [Alabau-Boussouira, Coron & Olive (2017), sicon].

^{2.} Some results in [Zhuang, Li & Rao (2016), pcps].

Open problems

■ Underactuated systems: 1

$$\frac{\partial y}{\partial t}(t,x) + \Lambda(x)\frac{\partial y}{\partial x}(t,x) = M(x)y(t,x) + Ju(t,x), \quad \text{rank } J < n?$$

■ Nonlocal boundary conditions: 1

$$\binom{y_-(t,1)}{y_+(t,0)} = Q \binom{y_-(t,0)}{y_+(t,1)}$$
?

- supp $u_k \subset (0, T) \times \omega_k$ with ω_k disjoints?
- Null controllability?
- Moving control domain $\omega = \omega(t)$?
- Quasi-linear systems? 12

Thank you for your attention!

More details available at : https://doi.org/10.1051/cocv/2024069

^{1.} Some results in [Alabau-Boussouira, Coron & Olive (2017), sicon].

Some results in [Zhuang, Li & Rao (2016), DCDS].